欢迎登录材料期刊网

材料期刊网

高级检索

采用高速压制技术制备铁基制品,探讨了冲击能量及冲击速度与冲击行程之间的关系,并研究了冲击能量、压制方式对生坯密度、最大冲击力、脱模力和径向弹性后效的影响.结果表明:在高速压制过程中,冲击能量与冲击行程呈线性关系,而冲击速度与冲击行程呈抛物线关系.生坯密度随着冲击能量的增加而逐渐增大.单次压制时,当冲击能量增加到6510 J时,生坯密度达到7.336 g/cm3,其相对密度约为97%.在总冲击能量相同的情况下,两次压制制备出的试样生坯密度最大,三次压制的最小.在高速压制过程中,试样的脱模力及其径向弹性后效均远低于传统压制.

参考文献

[1] F.Richard,HVC punches PM to new maB8 production limits,Metal Powder Report,57(9),26(2002)
[2] R.L.Orban,New research directions in powder metallurgy,Romanian Reports in Physics,56(3),505(2004)
[3] CHi Yue,GUO Shiju,MENG Fei,YANG Xia,ZHANG Heng,LIAN Yudong,High velocity compaction in powder metallurgy,Powder Metallurgy Industry,15(6),41(2005)(迟悦,果世驹,孟飞,杨霞,张恒,连玉栋,粉末冶金高速压制成形技术,粉末冶金工业,15(6),41(2005))
[4] SHEN Yuanxun,XIAO Zhiyu,WEN Liping,PAN Guoru,LI Yuanyuan,Principle,characteristics and status of high velocity compaction in powder metallurgy,Powder Metallurgy Industry,18(3),19(2006)(沈元勋,肖志瑜,温利平,藩国如,李元元,粉末冶金高速压制技术的原理、特点及其研究进展,粉末冶金工业,16(3),19(2006))
[5] ZHOU Shengyu,YIN Haiqing,QU Xuanhui,Research status of high velocity compaction technology in powder metallurgy,Materials Review,21(7),79(2007)(周晟宇,尹海清,曲选辉,粉末冶金高速压制技术的研究进展,材料导报,21(7),79(2007))
[6] P.Skoglund,in 2001 International conference on Power Transmission Components,High density PM components by high velocity compaction,edited by A.Volker,Chu Chiulung,F.William,J.Jandeska,(Ypsilemti,Metal Powder Industries Federation,2001) p.16
[7] P.Skoglund,High density PM parts by high velocity compaction,Powder Metallurgy,44(3),199(2001)
[8] P.Skoglund.in Advance in Powder Metallurgy & Partic ulate Materials-2002,High-Density PM Components by High Velocity Compaction,edited by A.Volker,Chu Chiulung,F.William,J.Jandeska,(New Jersey,Metal Powder Industries Federation,2002) p.1
[9] E.Caroline.Hoganas promotes potential of high velocity compaction,Metal Powder Report,58(9),6(2001)
[10] F.Dore,L.Lazzarotto,S.Bourdin,High velocity compaction:overview of materials,applications and potential,Materials Science Forum,534-536,293(2007)
[11] E.Torsten,L.Ppetri,Residual stresses in green bodies of steel powder after conventional and high speed compaction,Materials Science Forum,407(404),77(2002)
[12] B.Barendvanden,F.Christer,L.Tomas,Industrial implementation of high velocity compaction for improved properties,Powder Metallurgy,49(2),107(2006)
[13] P.Jousen,H-A.Haggblad,L.Troive,J.Furuberg,S.Allroth,P.Skoglund,Green body behavior of high velocity pressed metal powder,Materials Science Forum,534-536,289(2007)
[14] C.Aslund,in Euro PM 2004 Conference Proceedings,Highvelocity compaction (HVC) of stainless steel gas atomized powder,edited by D.Herbert,R.Ralmund,(Shrewsbury UK,EPMA,2004)P.533
[15] A.Bruska,S.Bengt,K.Leif,Development of a high-velocity compaction process for polymer powders,Polymer Testing,24(4),909(2005)
[16] D.Jauffres,O.Lame,G.Vigier,F.Dore,Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction,Polymer,48(21),6374(2007)
[17] HUANG Peiyun,Principles of Powder Metallurgy(Beijing,The press of Metallurgical Industry,1997) p.170(黄培云,粉末冶金原理,(北京,冶金工业出版社,1997) p.170)
[18] WU Chengyi,ZHANG Liying,Mechanical principles of Powder Forming(Bering,The press of Metallurgical Industry,2003) p.6 (吴成义,张丽英,粉末成形力学原理,(北京,冶金工业出版社,2003) p.6)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%