利用实验和Fick扩散方程模拟塑封材料对水的吸收过程,得到水汽在塑封材料中的扩散系数和饱和浓度塑封材料中的水分子存在于高分子链围成的微孔洞中,并与高分子聚合物以氢键相连.当塑封材料中水汽浓度达到饱和时,在水分子进入的有效体积内,水汽的密度为标准状态下水蒸气密度的100倍,为液态水密度的8%,这表明在塑封材料中水分子以一种特殊的液态水形态存在在一定的水汽浓度下,在界面处的微孔洞中水气液两相共存.在两相共存的微孔洞中由于水分子争夺高分子的氢键使高分子与芯片表面的二氧化硅层的结合减弱,逐步扩展形成可以观察到的分层.
参考文献
[1] | S.Luo, J.Leisen, C.P.Wong, 2001 Int'l Symposium on Electronic Packaging Technology, 133(2001) |
[2] | J.H.Wu, N.S.Fang, J.C.Lu, 1st International Symposium on High Density Packaging & Component Failure Analysis in electronics Manufacturing, 13(1998) |
[3] | W.Tong, A.Teng, Proceedings of International Symposium on Electronic Materials and Packaging, 464(2000) |
[4] | V.Gektin, A.Bar-Cohen, Proceeding of the Inter Society Conference on Thermal Phenomena in Electronic Systems, I-THERMV. Piscataway, NJ: IEEE, 306(1996) |
[5] | M.G.Pecht, A.Govind, IEEE Trans. Comp., Packag., Manufact.Technol. C, 20, 207(1997) |
[6] | A.A.O.Tay, T.Y.Lin, Proceeding of 48th Electronic Components and Technology Conference, Piscataway,NJ: IEEE, 371(1998) |
[7] | K.Yamamoto, J.Appl. Phys.(Jpn.), 34, 2043(1995) |
[8] | M.J.Adamson, J.Mater. Sci., 15, 1736(1980) |
[9] | C.L.Soles, A.F.Yee, Journal of Polymer Science: Part B: Polymer Physics, 38, 792(2000) |
[10] | C.L.Soles, F.T.Chang, B.A.Bolan, H.A.Hristov, D.W.Gidley, A.F.Yee, Journal of Polymer Science, Part B:Polymer Physics, 36, 3035(1998) |
[11] | D.W.Van Krevelen, Properties of polymers, 3rd ed., (Elsevier, Amsterdam, 1991), Chap.4 |
[12] | C.G.L.Khoo, J.Liu, Circuit World, 22(4), 9(1996) |
[13] | S.Luo, J.Leisen, C.P.Wong, 2001 Int'l Symposium on Electronic Packaging Technology, 133(2001) |
[14] | S.Ohizumi, Proc. IEEE 40th Electron. Comp. Technol. Conf., 632(1990) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%