在-196℃下对钛进行了拉伸和低周循环变形,观察分析了变形后试样的微观组织.结果表明,工业纯钛在-196℃拉伸变形后,强度比在室温下拉伸变形有了明显的提高,塑性也有明显的增加;在-196℃下循环变形时,循环应力-应变曲线位于-196℃静拉伸应力-应变曲线的上方,显示出明显的循环硬化特征.微观组织观察表明,-196℃拉伸及循环变形试样中存在着大量的孪晶,且孪晶数量随着循环应变幅及循环周次的增加而增加.在工业纯钛-196℃下的拉伸及循环变形中孪生起重要作用.
参考文献
[1] | M.H.Yoo, Metall.Trans., 12A, 409(1981) |
[2] | E.D.Levine, Trans. Met. Soc. AIME., 236, 1558(1966) |
[3] | J.W.Christan, S.Mahajan, Deformation Twinning, Progress in Materials Science, 39, 84(1995) |
[4] | S.G.Song, G.T.Gray Ⅲ, Acta Metall. Mater., 43, 2325(1995) |
[5] | C.J.Beevers, M.D.Halliday, Metal Science Journal, 3, 74(1969) |
[6] | A.Akhtar, Metall. Trans., 6A, 1105(1975) |
[7] | Z.F.Zhang, H.C.Gu, X.L.Tan, Mater. Sci. Eng., 252A, 85(1998) |
[8] | X.Tan, H.Gu, C.Laird, N.D.H.MunroE, Metall. Mater. Trans., 29A, 507(1998) |
[9] | A.M.Garde, R.E.Reed-hill, Metall. Trans., 2, 2885(1971) |
[10] | R.E.Reed-hill, Role of Deformation Twinning in Determining the Mechanical Properties of Metals, in Dislocation in Solids, Vol. 3, edited by F.R.N.Nabarro, (Amsterdam, North·Holland Publishing Company,1980) p.285 |
[11] | E.W.Collings, The Physical Metallurgy of Titanium Alloys (Ohio, American Society for Metals, 1984) p.164 |
[12] | V.F.Zackay, E.R.Parker, D.Fahr, R.Busch, Trans. ASM, 60, 252(1967) |
[13] | J.W.Cahn, Symmetry Changes Expected From Deformation Twinning and Martensite Transformations,Martensite, edited by G.B.Olson and W.S.Owegn (ASM International, Ohio, 1992) p.97 |
[14] | E.O.Hall, Twinning and Diffusionless Transformations in Metals (London, Butterworths, 1954) p.124 |
[15] | S.Mahajan, D.F.Williams, Int. Metall. Rev., 18, 43(1973) |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%