制备了具有有序孔洞多孔阳极氧化铝(AAO),并以之为模板通过溶胶-凝胶法制备高度取向的WO3·H2O纳米线阵列,用X射线衍射、XPS、扫描电镜(SEM)和比表面积仪进行表征.结果表明:WO3·H2O纳米线线径与AAO模板的孔径一致,且分布均匀,线径为26 am,线长为1.1μm;与相同条件下用玻纤布作载体制备的WO2·H2O膜相比,其平均晶粒小,低密度,高比表面积.将催化剂WO3·H2O/AAO与WO3·H2O/玻纤布两者分别对气相甲醛进行光催化降解反应以评价它们的光催化活性,得出WO3·H2O纳米线阵列光催化降解气相甲醛反应速率常数大约是WO3·H2O/玻纤布的3.4倍,说明以AAO为模板制备的WO3·H2O纳米线阵列具有更高的光催化活性.
参考文献
[1] | 廖振华,陈建军,姚可夫,等.纳米TiO2光催化剂负载化的研究进展[J].无机材料学报,2004,19(1):17-23.Liao Zhenhua,Chen Jianjun,Yao Kefu,et al.Progress of nanometer-TiO2 photocatalyst immobilization[J].Journal of Inorganic Materials,2004,19(1):17-23. |
[2] | 王勇,张昊,张军,等.纳米TiO2/再生纤维素复合薄膜的制备及光催化性能[J].复合材料学报,2007,24(3):35-39.Wang Yong,Zhang Hao,Zhang Jun,et al.Preparation and photocatalytic activity of nano TiO2/regenerated cellulose composite films[J].Acta Materiae Compositae Sinica,2007,24(3):35-39. |
[3] | 付乌有,杨海滨,刘冰冰,等.锐钛矿型TiO2/MnFe2O4核壳结构复合纳米颗粒的制备及其光催化特性[J].复合材料学报,2007,24(3):136-140.Fu Wuyou,Yang Haibin,Liu Bingbing,et al.Preparation and photoeatalytie property of anatase TiO2/MnFe2O4 core-shell structure nanoparticles[J].Acta Materiae Compositae Sinica,2007,24(3):136-140. |
[4] | Rocio R,Vazquez-Olmos A,Mata-Zamora M E,et al.Contact angle studies on anodie porous alumina[J].Journal of Colloid and Interface Science,2005,287(4):664-670. |
[5] | Kominami H,Kato J I,Murakamia S Y,et al.Solvothermal syntheses of semiconductor photocatalysts of ultra-high activities[J].Catalysis Today,2003,84(3):181-189. |
[6] | Liu Lian,Ye Shangguan.Kinetic analysis of photocatalytie oxidation of gas-phase formaldehyde over titanium dioxide[J].Chemosphere,2005,60(5):630-635. |
[7] | Zhao Juan,Yang Xudong.Photocatalytic oxidation for indoor air purification:A literature review[J].Building and Environment,2003,38(5):645-654. |
[8] | Leftheriotisa G,Papaefthimioua S,Yianoulis P,et al.Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films[J].Thin Solid Films,2001,384(2):298-305. |
[9] | Leftheriotis G,Papaefthimiou S,Yianoulis P,et al.Structural and electrochemical properties of opaque sol-gel deposited WO3 layers[J].Applied Surface Science,2003,218(2):275-280. |
[10] | Jimmy C Y,Wang Xinchen,Fu Xianzhi.Pore-wall chemistry and photocatalytic activity of mesoporous titania molecular sieve films[J].Chem Mater,2004,16(3):1523-1530. |
[11] | Jan H,Schattka Dmitry G,Shchukin Jianguang J,et al.Photocatalytic activities of porous titania and titania/zireonia structures formed by using a polymer gel templating technique[J].Chem Mater,2002,14(11):5103-5108. |
[12] | Mar%iacute,Hernández-Alonso D,Hungrí A B,et al.EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation[J].Applied Catalysis B:Environmental,2004,50(3):167-175. |
[13] | Yang Jianjun,Li Dongxu,Zhang Zhijun,et al.A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2[J].Journal of Photochemistry and Photobiology A:Chemistry,2000,137(2):197-202. |
[14] | Yu Jiaguo,Zhou Minghua,Cheng Bei,et al.Ultrasonic preparation of mesoporous titanium dioxide nanocrystalline photocatalysts and evaluation of photocatalytic activity[J].Journal of Molecular Catalysis A:Chemical,2005,227 (1):75-80. |
[15] | Nagaveni K,Hegde M S,Ravishankar N,et al.Giridhar madras synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity[J].Langmuir,2004,20(7):2900-2907. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%