复合材料学报, 2007, 24(4): 71-75. doi: 10.3321/j.issn:1000-3851.2007.04.013
松油醇包覆Cu-Ag复合纳米粉的氧化特性
孙维民 1, , 史桂梅 透过性及分离性能的影响.结果表明,在铸膜液中加入添加刘聚乙二醇(PEG)可有效提高薄膜的透过性,所添加PEG分子量为2000时薄膜的透过性最佳.PEG的添加量在5%以下为宜,PEG的大量加入并不能继续改善薄膜的透过性.薄膜浸入沉淀浴前的蒸发时间也会对薄膜透过性产生影响,蒸发时间应控制在60s左右为宜.另外,采用高沉淀能力的沉淀浴制得的分离膜具有高的分离性能及低的透过性.","authors":[{"authorName":"王孝军","id":"b630556c-f28c-49fe-a395-1a4a2f5d4ffb","originalAuthorName":"王孝军"},{"authorName":"于清泉","id":"e0a25915-ee1b-4510-a0d2-507803a03e20","originalAuthorName":"于清泉"},{"authorName":"黄恒梅","id":"9806fb1f-3503-47f3-a0c2-58ac53d232f9","originalAuthorName":"黄恒梅"},{"authorName":"杨杰","id":"1fd5ee36-663c-4e4f-a183-d89bd283b9de","originalAuthorName":"杨杰"},{"authorName":"李光宪","id":"fdc7126c-6669-4b4d-a8e5-d0b445d0588f","originalAuthorName":"李光宪"}],"doi":"","fpage":"140","id":"9635a574-f57c-4fa9-9988-d36660a59ca8","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8cb5a977-2394-4b4b-ab39-631b1e10da40","keyword":"聚芳硫醚砜","originalKeyword":"聚芳硫醚砜"},{"id":"4ae90790-13a6-41cb-90e0-5949db6d698b","keyword":"分离膜","originalKeyword":"分离膜"},{"id":"cdca4fb1-72a2-4e0b-ab01-6d39769e37b9","keyword":"透过性","originalKeyword":"透过性"},{"id":"218b546c-f8ed-4579-a5fc-7240f9d9910a","keyword":"分离性能","originalKeyword":"分离性能"}],"language":"zh","publisherId":"gfzclkxygc201010037","title":"聚芳硫醚砜分离膜的制备——制膜条件对分离性能的影响","volume":"26","year":"2010"},{"abstractinfo":"本文通过钢铁表面消耗水、氧和离子的速度与涂层透水、氧和离子的速度的比较,揭示了湿附着力而不是屏蔽作用,才是涂料对钢铁起保护作用的关键因素.","authors":[{"authorName":"吴跃焕","id":"7bcdfa90-aec2-4fca-9f8d-b2461dc3e906","originalAuthorName":"吴跃焕"}],"doi":"10.3969/j.issn.1671-5381.2002.01.009","fpage":"28","id":"8b4aab61-a788-4e4e-90d9-eec96ff9d3ea","issue":"1","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"bcf6060f-9fe2-4ada-9bc1-e84773abe984","keyword":"钠铁","originalKeyword":"钠铁"},{"id":"dfb9560b-00e1-46be-8ba7-cbd9b7c3bef6","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"99e341f2-cd73-4eb0-bc62-4c45d915e860","keyword":"防护","originalKeyword":"防护"},{"id":"7b863a5e-8128-4da1-9c19-0956b97d79b8","keyword":"透过性","originalKeyword":"透过性"},{"id":"88889e9c-6a63-4cea-843a-377d3f7deefa","keyword":"湿附着力","originalKeyword":"湿附着力"}],"language":"zh","publisherId":"hccllhyyy200201009","title":"钢铁腐蚀与涂料湿附着力的关系","volume":"31","year":"2002"},{"abstractinfo":"采用等离子体增强化学气相沉积法(PECVD)在聚乳酸(PLLA)薄膜表面沉积SiOx层,以改善PLLA薄膜对气体的透过性和选择性.通过红外光谱仪和压差法透气仪分别对沉积效果和薄膜透气性进行测试.结果表明,PLLA/SiOx复合膜相比纯PLLA膜,其对气体的透过性有所下降,而选择性有所提高.在25℃时,40 μm的PLLA/SiOx膜对O2、CO2、N2和水蒸气的透过性分别降低了58.9%,48.6%,67.8%和52.3%,透气比α(CO2/O2)、α(O2/N2)和α(CO2/N2)则分别平均提高了20.0%,21.8%和37.5%;25℃时,60 μm的PLLA/SiOx膜对O2、CO2、N2和水蒸气的透过性分别降低了23.8%,14.5%,46.7%和49.5%,透气比α(CO2/O2)、α(O2/N2)和α(CO2/N2)则分别提高了10.7%,30.7%和38.2%.","authors":[{"authorName":"宋树鑫","id":"b632ef1a-270b-46a8-bc3e-39d4c02a7e72","originalAuthorName":"宋树鑫"},{"authorName":"梁敏","id":"e90fa338-4b2c-4c8a-902f-67d036b737da","originalAuthorName":"梁敏"},{"authorName":"王羽","id":"cd558929-90e1-4165-aedb-417333fac6c6","originalAuthorName":"王羽"},{"authorName":"刘林林","id":"a0b011ee-58b7-4cd2-a245-0e9a35b214ad","originalAuthorName":"刘林林"},{"authorName":"张玉琴","id":"559936dd-302b-4351-ab18-48971fda3715","originalAuthorName":"张玉琴"},{"authorName":"齐小晶","id":"e361371e-4c9b-4405-b4a7-805171eabf8f","originalAuthorName":"齐小晶"},{"authorName":"董同力嘎","id":"89d51f86-01d9-4171-b4fc-862c818fd6a8","originalAuthorName":"董同力嘎"}],"doi":"10.16865/j.cnki.1000-7555.2016.11.026","fpage":"135","id":"76ca3dbd-2c09-4163-8faf-80f78f53d55d","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a1e611a3-7f44-4ec2-841e-dc148f16ae38","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"dd12fc6f-a03b-454b-b9d9-ca8ec0566cc6","keyword":"等离子体增强化学气相沉积法","originalKeyword":"等离子体增强化学气相沉积法"},{"id":"ec63198c-3fff-4527-a3d1-8bc2d798c298","keyword":"SiOx层","originalKeyword":"SiOx层"},{"id":"ba0bebe4-706e-433f-8567-f03b45034fdd","keyword":"气体透过性","originalKeyword":"气体透过性"},{"id":"b958a427-c52e-45ef-bd49-6795d2a4e111","keyword":"气体选择性","originalKeyword":"气体选择性"}],"language":"zh","publisherId":"gfzclkxygc201611026","title":"聚乳酸/SiOx薄膜的制备及对气体的透过性和选择性","volume":"32","year":"2016"},{"abstractinfo":"通过水蒸汽透过性试验方法标准的分析,以ASTM标准和国标GB为基准,确定了建筑乳胶漆膜水蒸汽透过性的试验条件和试验方法,并表述了试验结果的表示和计算.研究了所用试验方法的透湿杯密封性,以及常温常湿和高温高湿下不同透湿面积试样水蒸汽透过量的试验结果.","authors":[{"authorName":"马捷","id":"19e14585-1ba2-499a-8142-aa48e7d7f722","originalAuthorName":"马捷"},{"authorName":"袁扬","id":"8159d096-11ed-4314-8ab3-d6ca9e40b28a","originalAuthorName":"袁扬"}],"doi":"10.3969/j.issn.0253-4312.2003.09.001","fpage":"1","id":"baa2b6df-96af-4423-8a9a-c8172d14e199","issue":"9","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"6b4aef53-80e7-4595-a223-3dc2b0a0c32c","keyword":"乳胶漆","originalKeyword":"乳胶漆"},{"id":"340a2d7b-7f0e-4e00-99c1-e494c4b33ca4","keyword":"水蒸汽透过性","originalKeyword":"水蒸汽透过性"},{"id":"8d502062-1c1a-47ea-9063-f4776f98f374","keyword":"试验方法","originalKeyword":"试验方法"},{"id":"1d3a91a3-3857-45c3-bdd9-cbd497568fc3","keyword":"研究","originalKeyword":"研究"}],"language":"zh","publisherId":"tlgy200309001","title":"建筑乳胶漆膜水蒸汽透过性试验方法的研究","volume":"33","year":"2003"},{"abstractinfo":"研究了纯丙乳液、硅丙乳液和热塑性丙烯酸树脂3种材料涂膜的拉伸模量、拉伸强度、断裂伸长率,发现3种涂膜较脆、强度较小.用重新设计的透湿杯,测定了3种涂膜和用其涂覆的壁画试块的水汽透过性,并结合扫描电镜观察,发现3种涂膜的水汽透过率比较接近;3种材料涂膜对试块微观形貌的影响和对试块水汽透过性的影响之间存在关联.","authors":[{"authorName":"苏伯民","id":"d26bd145-19e6-4e23-878a-5387802b8def","originalAuthorName":"苏伯民"},{"authorName":"张化冰","id":"d3126336-3c6c-47ea-82e8-9ecf805e3f9b","originalAuthorName":"张化冰"},{"authorName":"蒋德强","id":"08d71f57-6ca1-41a1-a672-f9fa88e47282","originalAuthorName":"蒋德强"},{"authorName":"赵永成","id":"446b206a-8d11-4cb6-aaca-242415a24a5d","originalAuthorName":"赵永成"},{"authorName":"张瑞","id":"88257faf-ab5b-47dd-a0b1-39d8b097e036","originalAuthorName":"张瑞"}],"doi":"","fpage":"51","id":"2dcfd8b8-90ca-4755-8129-a833147e33a3","issue":"6","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"e6ebc66e-d9f5-49f0-81ab-822a5ef46a94","keyword":"壁画","originalKeyword":"壁画"},{"id":"44592d8b-0ba0-4350-acfd-5078899242c0","keyword":"保护材料","originalKeyword":"保护材料"},{"id":"453b1914-68c5-4deb-83b9-f3e324e5f22e","keyword":"力学性质","originalKeyword":"力学性质"},{"id":"831700d4-ff37-4c10-aab6-6f04301e32f5","keyword":"水汽透过率","originalKeyword":"水汽透过率"}],"language":"zh","publisherId":"tlgy201506011","title":"3种常用壁画保护材料的力学性能和水汽透过性研究","volume":"45","year":"2015"},{"abstractinfo":"系统研究了不同克重丙纶无纺布的网孔结构和水蒸气透过性(MVTR),结果表明:采用光学显微镜研究丙纶无纺布丝网形态和网孔结构是完全可行的;随着无纺布克重的增加,网孔结构变密,孔隙率变小,透气性变差;当其克重介于25 ~45g/m2范围时,MVTR达到2100g/(m2.24h);采用丙纶无纺布制备的一次性吸汗巾的MVTR达到2080g/(m2.24h),透气性和舒适性优于聚乙烯透气膜,具有良好的性价比.","authors":[{"authorName":"阳范文","id":"3763a011-0a1d-49e9-a7ec-f7013885e8fd","originalAuthorName":"阳范文"},{"authorName":"陈晓明","id":"6b8cc23e-05d1-4278-81af-b9cc2a9eff52","originalAuthorName":"陈晓明"},{"authorName":"朱恒盛","id":"11e78eb1-24e5-40d3-a2b9-6b9f8a474ed0","originalAuthorName":"朱恒盛"},{"authorName":"辛海","id":"b0ac63ea-8e51-4638-a952-1b8e6a173ba6","originalAuthorName":"辛海"}],"doi":"","fpage":"11","id":"919eb062-6aa7-4cfa-a3d5-0cd91419adaf","issue":"5","journal":{"abbrevTitle":"HCCLLHYYY","coverImgSrc":"journal/img/cover/HCCLLHYYY.jpg","id":"42","issnPpub":"1671-5381","publisherId":"HCCLLHYYY","title":"合成材料老化与应用"},"keywords":[{"id":"73e8e5c3-14b9-4aec-be90-1c80e2e27e21","keyword":"丙纶","originalKeyword":"丙纶"},{"id":"c3e8930c-520f-4b2c-93a9-10cface4b543","keyword":"无纺布","originalKeyword":"无纺布"},{"id":"33bb54a0-d697-4ca6-94c9-13a8e3f67310","keyword":"结构","originalKeyword":"结构"},{"id":"14d04b50-5cde-4a96-95a5-e8162c954e16","keyword":"水蒸气透过性","originalKeyword":"水蒸气透过性"}],"language":"zh","publisherId":"hccllhyyy201205003","title":"丙纶无纺布的网孔结构和水蒸气透过性研究","volume":"41","year":"2012"},{"abstractinfo":"改变化学反应时间获取一系列荷电量不同的改性再生纤维素(RC)超滤膜,定量地考察了超滤膜上荷电量对膜的渗透性和牛血清蛋白(BSA)透过率的影响.研究结果表明:反电渗透现象造成荷电量不同的超滤膜上的水透过系数均减小,减小的程度与膜的荷电量和溶液离子强度有关;溶液pH值为7.0的条件下,荷负电的BSA与荷负电改性RC膜之间的静电相互作用,使BSA的透过率减小,减小的程度同样与膜的荷电量和溶液离子强度有关.研究结果提供了荷电量对超滤膜渗透性和BSA透过率影响的定量数据;揭示了相对于传统超滤膜而言,荷电超滤膜具有更好的渗透性和分离选择性相结合的优势.","authors":[{"authorName":"邵嘉慧","id":"4e8bec62-6d44-4ef0-a31d-976a3d57d390","originalAuthorName":"邵嘉慧"},{"authorName":"王来欢","id":"b46111b2-be61-4491-b580-7d57f04092c3","originalAuthorName":"王来欢"},{"authorName":"何义亮","id":"2b55ad43-a65e-409f-98cd-0be2f91da11d","originalAuthorName":"何义亮"}],"doi":"10.3969/j.issn.1007-8924.2010.04.008","fpage":"38","id":"bd7a3730-46b1-4ef1-8e68-9a4ae1bef1f7","issue":"4","journal":{"abbrevTitle":"MKXYJS","coverImgSrc":"journal/img/cover/MKXYJS.jpg","id":"54","issnPpub":"1007-8924","publisherId":"MKXYJS","title":"膜科学与技术 "},"keywords":[{"id":"6e4d1780-f32b-4c1b-9d5c-026e62ce6f0b","keyword":"荷电膜","originalKeyword":"荷电膜"},{"id":"34fd3d2f-9484-436d-b5d1-7b70e13d51d9","keyword":"超滤","originalKeyword":"超滤"},{"id":"e738ce09-4e44-4f7f-8063-f935df9b8c80","keyword":"渗透性","originalKeyword":"渗透性"},{"id":"05a23cfb-1935-468e-9110-a3490b3e0d90","keyword":"透过率","originalKeyword":"透过率"},{"id":"01063a7d-22b6-4286-b9a5-a063e25e60a9","keyword":"静电相互作用","originalKeyword":"静电相互作用"},{"id":"a53c04b4-e021-472a-8f2f-9b646bcbf415","keyword":"反电渗透","originalKeyword":"反电渗透"}],"language":"zh","publisherId":"mkxyjs201004008","title":"膜上荷电量对超滤膜的渗透性和牛血清蛋白透过率影响的研究","volume":"30","year":"2010"},{"abstractinfo":"合成了3种含三氟甲基的芳香二胺,进而与3,3',4,4'-联苯四甲酸二酐(BPDA)缩聚,得到3种对苯醚型含氟聚酰亚胺薄膜,并由4,4'-二氨基二苯醚(4,4'-ODA)与BPDA缩聚得到聚酰亚胺薄膜.对4种聚酰亚胺薄膜的水蒸汽透过率、吸水性和热学性能的测试结果表明,其中聚合物PI-1(2,2'-BTF-4,4'-BADE+BPDA; BTF:双三氟甲基;BADE:二氨基二苯醚)的水蒸汽透过率为7.70 g/(h·m2),吸水率为0.67%,玻璃化转变温度为259.74℃,质量损失5%的温度为521.40℃,具有良好的水蒸汽透过性和低吸水性.","authors":[{"authorName":"韩宝春","id":"79571745-569c-4098-836e-861ac185498e","originalAuthorName":"韩宝春"},{"authorName":"吴作林","id":"06e7ba05-a202-465c-9356-b554ebc1393a","originalAuthorName":"吴作林"},{"authorName":"张春华","id":"4904f8d0-d9d0-4170-9ed8-afc2599d249e","originalAuthorName":"张春华"},{"authorName":"朱丹阳","id":"b876764f-d9b2-437c-a61a-3a20ab1001e9","originalAuthorName":"朱丹阳"},{"authorName":"丁孟贤","id":"5ac3b014-97c4-4db3-b233-3a852bc21fcf","originalAuthorName":"丁孟贤"},{"authorName":"杨正华","id":"59d17241-8ad2-444f-b973-ccfd84b81d30","originalAuthorName":"杨正华"}],"doi":"10.3724/SP.J.1095.2013.20282","fpage":"523","id":"ae22792a-5a1f-4580-be82-bc3112d44f82","issue":"5","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"b5b1a483-398b-4483-a3f2-e0789651f196","keyword":"聚酰亚胺","originalKeyword":"聚酰亚胺"},{"id":"bd437dd8-dee2-4190-8d3a-02c983802cbc","keyword":"三氟甲基","originalKeyword":"三氟甲基"},{"id":"f03088eb-fdda-4dc1-aa2d-2cdbad43ca87","keyword":"合成","originalKeyword":"合成"},{"id":"90dbbec5-8ec9-4ef7-95b6-dc7440a44af3","keyword":"水蒸汽透过率","originalKeyword":"水蒸汽透过率"},{"id":"ece33062-a76a-4caa-affa-cec84f6847d2","keyword":"吸水性","originalKeyword":"吸水性"}],"language":"zh","publisherId":"yyhx201305006","title":"引入三氟甲基侧基对对苯醚型聚酰亚胺薄膜吸水性及水蒸汽透过性的影响","volume":"30","year":"2013"},{"abstractinfo":"透过性能对用于过滤分离、流体混合、布气分流等方面的多孔材料是一项十分关键的质量指标.主要介绍了多孔材料透过性能的表征方式,包括流体流动的基本概念、层流条件下流体的透过性能表征、多孔材料透过性能的综合表征、气体透过多孔材料时渗透系数的具体表征等方面.","authors":[{"authorName":"刘培生","id":"528b0008-0683-4a2d-8b59-95b3d3bac98f","originalAuthorName":"刘培生"},{"authorName":"杨全成","id":"97d82cb1-303e-4aeb-87e1-049cd541809b","originalAuthorName":"杨全成"},{"authorName":"周茂奇","id":"ee6de089-ffb2-4d27-acb3-d54a556d1cbf","originalAuthorName":"周茂奇"}],"doi":"10.3969/j.issn.1009-9964.2006.04.004","fpage":"12","id":"919c5a1a-951e-4e30-85e4-78e18d5fdf05","issue":"4","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"c780b820-7629-431d-9d5b-5a9f0e80f6bd","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"a89c6d05-fc04-4f2a-9f16-151466d6fdbf","keyword":"泡沫材料","originalKeyword":"泡沫材料"},{"id":"af340e70-8d07-46fd-8cee-0b6811722a0d","keyword":"透过性能","originalKeyword":"透过性能"}],"language":"zh","publisherId":"tgyjz200604004","title":"多孔材料透过性能的表征","volume":"23","year":"2006"},{"abstractinfo":"阐述了电泳涂装后清洗的重要性.采用超滤系统大大提高了涂料利用率及涂膜质量.推导出超滤液透过量的计算公式.","authors":[{"authorName":"张浩","id":"9b7192f2-cd06-42cf-b034-ef0d50aab4f8","originalAuthorName":"张浩"}],"doi":"10.3969/j.issn.1004-227X.1999.01.009","fpage":"31","id":"34c382aa-3d56-4b45-95ed-8406ce8c2aec","issue":"1","journal":{"abbrevTitle":"DDYTS","coverImgSrc":"journal/img/cover/DDYTS.jpg","id":"21","issnPpub":"1004-227X","publisherId":"DDYTS","title":"电镀与涂饰 "},"keywords":[{"id":"ea76cb1a-3016-462e-af72-1ae521082f9e","keyword":"电泳涂装","originalKeyword":"电泳涂装"},{"id":"0ff2969c-711b-4673-b128-0df692c864f4","keyword":"超滤液","originalKeyword":"超滤液"},{"id":"40ae3024-786a-468f-b53d-915ef5f98953","keyword":"透过量","originalKeyword":"透过量"}],"language":"zh","publisherId":"ddyts199901009","title":"电泳涂装后超滤液透过量的计算","volume":"18","year":"1999"}],"totalpage":4732,"totalrecord":47313}