利用具有精确周期性边界条件的均质化理论,用宏微观有限元法分析了非连续碳纳米管呈规则和交错2种排列情况下,纳米管沿管长方向的应力分布规律.为保证传统的连续力学理论的适用性,本文中的碳纳米管采用了用分子动力学方法简化的等效纤维模型.规则排列所得结果与应用Cox剪滞理论及Lauke、Fu 等经典理论得出的结果比较发现:除了经典理论中指出的碳纳米管长径比及纳米管体积含量2个因素外,纳米管形状及在基体中的排列方式对材料的力学性质也有较大影响.交错排列的纳米管在复合材料中有较高效率的应力转化和传递能力,碳纳米管的端部间距(2Tf)对应力的分布有较大的影响.结果显示出碳纳米管作为材料增强相的特殊性,证明了均质化理论分析碳纳米管增强复合材料应力分布规律的可行性.
参考文献
[1] | Qian D,Dickey E C,Andrews R,Rantell T.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Applied Physics Letters,2000,76:2868-2870. |
[2] | Schadler L S,Giannaris S C,Ajayan P M.Load transfer in carbon nanotube epoxy composites[J].Applied Physics Letters,1998,73:3842-3844. |
[3] | Cox H L.The elasticity and strength of paper and other fibrous materials[J].Brit J Appl Phys,1952,3:72-79. |
[4] | Lauke B.Theoretical considerations on deformation and toughness of short-fiber reinforced polymers[J].J Polym Engin,1992,11:103-151. |
[5] | Rosen B W.Mechanics of composite strengthening[M]∥ Fiber composite materials.OH:Amer Soc for Metals,Metals Park,1965:37-75. |
[6] | Fu S Y,Yue C Y,Hu X,Mai Y M.On the elastic stress transfer and longitudinal modulus of unidirectional multi-short-fiber composites[J].Composites Science and Technology,2000,60:3001-3012. |
[7] | Haque A.S2-glass/epoxy polymer nanocomposites:Manufacturing,structures,thermal and mechanical properties[J].J Compos Mater,2003,37:1821-1837. |
[8] | Seidel G D,Lagoudas D C.Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites[J].Mechanics of Materials,2006,38(8/10):884-907. |
[9] | Lourie O,Wagner H D.Evidence of stress transfer and formation of fracture cluster in carbon nanotube-based composites[J].Composites Science and Technology,1999,59:975-977. |
[10] | Haque A,Ramasetty A.Theoretical study of stress transfer in carbon nanotube reinforced polymer matrix composites[J].Composite Structures,2005,71:68-77. |
[11] | Song S Y,Youn J R.Modeling of effective elastic properties for polymer based carbon nanotube composites[J].Polymer,2006,47(5):1741-1748. |
[12] | Wang W X,Luo D M,Takao Y,Kakimoto K.New solution method for homogenization analysis and its application to the prediction of macroscopic elastic constants of materials with periodic microstructures[J].Computers and Structures,2006,84:991-1001. |
[13] | Guedes J M,Kikuchi N.Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods[J].Computer Methods in Applied Mechanics and Engineering,1990,83:143-198. |
[14] | Hassani B,Hinton E.A review of homogenization and topology optimization Ⅰ:Homogenization theory for media with periodic structure[J].Computer & Structure,1998,69:707-717. |
[15] | Odegard G M,Gates T S,Wise K E,Park C,Siochi E J.Constitutive modeling of nanotube-reinforced polymer composites[J].Composites Science and Technology,2003,63:1671-1687. |
[16] | Karami G,Garnich M.Effective moduli and failure considerations for composites with periodic fiber waviness[J].Composite Structures,2005,67:461-475. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%