欢迎登录材料期刊网

材料期刊网

高级检索

对T6热处理后的SiCP/6061Al合金复合材料的高温(300℃)单轴应变循环特性和棘轮行为进行了实验研究,讨论了具有两种颗粒体积分数的复合材料在高温下不同加载条件时的循环软/硬化特性和棘轮行为特征.实验研究表明:颗粒增强金属基复合材料宏观上表现出与金属材料相类似的应变循环特性和棘轮变形规律,即复合材料在非对称应力循环下也将产生一定的棘轮变形,并随应力幅值和平均应力的增加而增加;颗粒的引入使复合材料抵抗棘轮变形的能力增强,棘轮变形随颗粒体积分数的升高而下降;在高温下棘轮行为体现出明显的时间相关特性,即棘轮应变值明显依赖于加载率和峰值保持时间,并具有明显的蠕变-棘轮交互作用.在对该类复合材料的棘轮行为进行本构描述时必须考虑复合材料的微结构特征、加载条件以及时间效应等的影响.

参考文献

[1] Delobelle P,Robinet P,Bocher L.Experimental study and phenomenological modelization of ratcheting under uniaxial and biaxial loading on an austenitic stainless steel[J].Int J Plast,1995,11(4):295-330.
[2] Kobayashi M,Ohno N,Igari T.Ratcheting characteristics of316FR steel at high temperature[J].Int J Plast,1998,14(4-5):355-390.
[3] Ohno N,Wang J D.Kinematic hardening rules with critical state of dynamic recovery[J].Int J Plast,1993,9(3):375-403.
[4] Kang G Z,Gao Q,Yang X J.Experimental study on the cyclic deformation and plastic flow of U71Mn rail steel[J].Int J Mech Sci,2002,44(8):1645-1661.
[5] Kang G Z.A visco plastic constitutive model for ratcheting of cyclically stable materials and its finite element implementation[J].MechMater,2004,36(4):299-312.
[6] Kang G Z,Gao Q,Yang X J.A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial and multiaxial ratcheting of SS304 stainless steel at room temperature[J].Mech Mater,2002,34(9):521-531.
[7] Kang G Z,Gao Q,Cai L X,et al.Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304stainless at room and high temperatures[J].Nucl Eng Des,2002,216(1-3):13 26.
[8] 康国政,孙亚芳,张娟,等.SS304不锈钢的室温单轴时相关棘轮行为研究[J].金属学报,2005,41(3):277-281.Kang G Z,Sun Y F,Zhang J,et al.Uniaxial time-dependent ratcheting behaviors of SS304 stainless steel at room temperature[J].Acta Metall Sin,2005,41(3):277-281.
[9] Chaboche J L.On some modifications of kinematic hardening to improve the description of ratcheting effects[J].Int J Plast,1991,7(7):661-678.
[10] Chen X,Jiao R,Kim K S.On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel[J].IntJ Plast,2005,21(2):161-184.
[11] 隋贤栋,罗承萍,欧阳柳章,等.SiCP/ZL109复合材料中SiC的界面行为[J].复合材料学报,2000,17(1):65-70.Sui X D,Luo C P,Ouyang L Z,et al.SiC particulate and their interfacial behavior in SiCP/ZL109 composite[J].Acta Mater Comp Sin,2000,17(1):65-70.
[12] 于兴文,周育红,周德瑞,等.铝金属基复合材料Al6061/SiCP表面稀土转化膜的研究[J].复合材料学报,2000,17(2):30-33.Yu X W,Zhou Y H,Zhou D R,et al.Study of rear earth metal (REM) conversion coating on aluminum-based metal matrix composites (MMC) Al6061/SiCP[J].Acta Mater Comp Sin,2000,17(2):30-33.
[13] 袁广江,章文峰,王殿斌,等.SiC颗粒增强铝基复合材料制备及机加工性能研究[J].复合材料学报,2000,17(2):38-41.Yuan G J,Zhang W F,Wang D B,et al.Preparation and cutting property of SiC particles reinforced aluminum matrix composite[J].Acta Mater Comp Sin,2000,17(2):38-41.
[14] 齐海波,丁占来,樊云昌,等.SiC颗粒增强铝基复合材料制动盘的研究[J].复合材料学报,2001,18(1):62-66.Qi H B,Ding Z L,Fan Y C,et al.Research on automotive brake discs of SiCP/Al composite[J].Acta Mater Comp Sin,2001,18(1):62-66.
[15] 陈跃,沈百令,张永振,等.SiC颗粒增强铝基复合材料/半金属材料干摩擦磨损特性[J].复合材料学报,2002,19(3):56-60.Chen Y,Shen B L,Zhang Y Z,et al.Dry slid tribological characteristics of SiC particle-reinforced aluminum composites against semi-metallic frictional material[J].Acta Mater Comp Sin,2002,19(3):56-60.
[16] 程光旭,李峰,李志军.颗粒增强铝基复合材料细观损伤演化特征及最弱环损伤模型[J].复合材料学报,2002,19(6):31-36.Cheng G X,Li F,Li Z J.Characteristics of micromechanical damage evolution and weakest chain model for particulate reinforced aluminum matrix composites[J].Acta Mater Comp Sin.2002,19(6):31-36.
[17] 曲寿江,耿林,曹国剑,等.挤压铸造法制备可变形SiCP/Al复合材料的组织与性能[J].复合材料学报,2003,20(3):69-73.Qu S J,Geng L,Cao G J,et al.Microstructure and properties of deformable SiCP/A1 composite fabricated by squeeze casting method[J].Acta Mater Comp Sin,2003,20(3):69-73.
[18] 张强,陈国钦,姜龙涛,等.两种粒径颗粒混合增强铝基复合材料的导热性能[J].复合材料学报,2005,22(1):47-51.Zhang Q,Chen G Q,Jiang L T,et al.Thermal conduction properties of aluminum matrix composites reinforced with dualsized particles[J].Acta Mater Comp Sin,2005,22(1):47-51.
[19] Han N L,Wang Z G,Yang J M,et al.Plastic-strain cyclic response of SiC particulate reinforced aluminum composites[J].Mater Sci Eng A,2002,337(1-2):140-145.
[20] Srivatsan T S,Meslet A H,Vasudevan V K.Cyclic plastic strain response and fracture behavior of 2009 aluminum alloy metal-matrix composite[J].Int J Fatigue,2005,27(4):357-371.
[21] Han N L,Wang Z G,Zhang G D,et al.Effect of reinforcement on cyclic stress response of a particulate SiC/Al composite[J].Materials Letters,1999,38(1):70-76.
[22] Xia Z,Ellyin F.Multiaxial fatigue of an alumina particle reinforced aluminum alloy[J].Int J Fatigue,1998,20(1):51-56.
[23] Han N L,Wang Z G,Wang W L,etal.Low-cycle fatigue behavior of a particulate SiC/2024Al composite at ambient and elevated temperature[J].Comp Sci Tech,1999,59(1):147-155.
[24] 康国政,刘宇杰,董城.SiCP/6061Al合金复合材料的单轴棘轮行为及热处理工艺的影响[J].复合材料学报,2005,22(增刊).Kang G Z,Liu Y J,Dong C.Uniaxial ratcheting behaviors of SiCP/6061Al alloy composites and the effect of thermal treatment[J].Acta Mater Comp Sin,2005,22(supplement).
[25] 宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响[J].力学季刊,2000,21(4):415-420.Gong N P,Zhou Y X,Xia Y M.Effect of strain rate on tensile behavior of SiCP/Al MMC[J].Chinese Quarterly of Mechanics,2000,21(4):415-420.
[26] 钱立和,王中光,小林俊郎,等.SiC颗粒增强6061Al基复合材料的动态拉伸性能I:应变硬化[J].材料研究学报,2002,16(3):285-288.Qian L H,Wang Z G,Kobayashi T,et al.Dynamic tensile deformation of SiCP/6061Al composite I:Strain hardening characteristic[J].Chinese Journal of Materials Research,2002,16(3):285-288.
[27] Mori T,Tanaka K.Average stress in matrix and average elastic energy of materials with misfitting inclusions[J].Acta Mater,1973,21(5):571-574.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%