用有限元法预测了二步法三维编织复合材料的有效弹性性能.在二步法方型三维编织复合材料细观结构大单胞模型的基础上,考虑复合材料中纤维束的连续性及其空间的交织效应,用离散杆单元构成的桁架结构有限元模型等效代替复合材料承受单轴拉伸载荷时的受力响应.同时,以轴向拉伸性能测试试样为对象,应用有限元软件包MARC的结构静力分析部分计算了轴向弹性模量和泊松比,数值计算结果与实验结果一致性较好.参数分析结果表明,轴向弹性模量随轴纱与编织纱线密度之比和节距长度的增加呈增加趋势.
参考文献
[1] | 李嘉禄,孙颖.二步法方型三维编织预制件编织结构参数与工艺参数[J].复合材料学报,2003,20(2),81-87.Li J L, Sun Y. Braiding structure parameters and process parameters of the two-step rectangle 3D braided preform [J].Acta Materiae Com positae Sinica , 2003, 20(2): 81-87 |
[2] | Chou T W, Ko F K. Textile Structural Composites [M].Amsterdam: Elsevier Science Publishers, 1989. 129-171. |
[3] | Norman T, Allison P, Baldwin J W, et al. Effect of tow a lignment on the mechanical performance of 3D woven textile composites [J]. ComposManufacturing, 1993, 4(4): 209-215. |
[4] | Pastore C M, Gowayed Y A. A self-consistent fabric geometric model: Modification and application of a fabric geometry model to predict the elastic properties of textile composites [J]. J Compos TechnolRes, 1994, 16(1): 32-36. |
[5] | Kalidindi S R, Abusafieh A. Longitudinal and transverse moduli and strength of low angle 3-D braided composites [J].J Compos Mater, 1996, 30(8): 885-905. |
[6] | Sun H Y, Di S L, Zhang N, et al. Micromechanics of Braided Composites via Multivariable FE [J]. Computers and Structures, 2003, 81: 2021 - 2027. |
[7] | Amato E D. Finite element modeling of textile composites [J]. Composite Structures, 2001, 54: 467-475. |
[8] | Byun J H, Whitney T J, DuG W, etal. Analytical characterization of 2-step braided composites [J]. J Comp Mater,1991,25: 1599-1618. |
[9] | 李嘉禄,孙颖.二步法方型三维编织复合材料的细观结构[J].复合材料学报,2002,19(4):69-75.Li J L, Sun Y. Microstructure of the two-step rectangle 3D braided composites [J]. Acta Materiae Compositae Sinica,2002, 19(4): 69-75. |
[10] | 龚尧南.结构力学基础[M].北京:北京航空航天大学出版社,2002.45. |
[11] | 王世忠,孟庆元,高维成.结构力学与有限元法[M].哈尔滨:哈尔滨工业大学出版社,2003.112-113. |
[12] | 陈利.三维编织复合材料细观结构及其弹性性能预报[D].天津:天津工业大学,1997.78. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%