欢迎登录材料期刊网

材料期刊网

高级检索

提出了混凝土杨氏模量预测的三相复合球模型.在细观水平上将混凝土看成是一种由分散相骨料、中间相界面和连续相水泥浆所组成的三相复合材料.应用混凝土细观结构模拟技术,获得了任一级配骨料的界面体积分数.模拟结果表明,李氏近似法高估了界面体积分数,界面体积分数在很大程度上取决于界面厚度、最大骨料直径和骨料级配.引入三相复合球模型,给出了混凝土杨氏模量的解析解.将解析解与实验结果进行比较,证实了本文模型的有效性.数值结果也表明,对于给定的骨料体积分数,混凝土杨氏模量随着最大骨料直径和界面杨氏模量的增大而增大,但随着界面厚度的增大而减小,骨料级配对混凝土杨氏模量也有较大影响.

参考文献

[1] Christensen R M. Mechanics of Composite Materials [M].New York: John Wiley & Sons, 1979. 311-319.
[2] 杜善义,吴林志.含球夹杂复合材料的力学性能分析[J].复合材料学报,1994,11(1):105-111.Du S Y, Wu L Z. Analysis of mechanical properties of composite materials with spherical particulates [J]. Acta Materiae Compositae Sinica, 1994, 11(1): 105-111.
[3] 林政,广濑幸雄,杨树梅.含有扁长椭球形增强物复合材料的弹性常数[J].复合材料学报,1995,12(2):108-117.Lin Z, Hirose Y, Yang S M. Overall elastic moduli of composite materials with prolate spheroid inclusions [J]. Acta Materiae Compositae Sinica, 1995, 12(2): 108-117.
[4] 王人杰.纤维增强复合横向弹性常数[J].复合材料学报,1996,13(2):98-104.Wang R J. Transverse elastic constants for fiber reinforced composite materials [J]. Acta Materiae Compositae Sinica,1996, 13(2): 98-104.
[5] Simeonov P, Ahmad S. Effect of transition zone on the elastic behaviour of cement-based composites [J]. Cement and Concrete Research, 1995, 25(1): 165- 176.
[6] Hashin Z, Shtrikman J. A variational approach to the theory of the elastic behaviour of multiphase materials [J]. Journal of the Mechanics and Physics of Solids, 1963, 11 (2): 127-140.
[7] Nilsen A U, Monteiro P J M. Concrete: A three phase materials [J]. Cement and Concrete Research, 1993, 23(1): 147-151.
[8] Li G Q, Zhao Y, Pang S S. Four-phase sphere modelling of effective bulk modulus of concrete [J]. Cement and Concrete Research, 1999, 29(6): 839-845.
[9] 崔岩,耿林,姚忠凯.轻微界面反应对SiCP/6061Al复合材料弹性模量的影响[J].复合材料学报,1998,15(1):74-77.Cui Y, Geng L, Yao Z K. Effect of slight interfacial reaction on the Young's modulus of SiCP/6061Al composite [J]. Acta Materiae Compositae Sinica , 1998, 15(1): 74-77.
[10] 樊建中,姚忠凯,杜善义,等.SiC颗粒增强金属基复合材料弹性模量与界面结合状况关系研究[J].复合材料学报,1998, 15(2): 1-5.Fan J Z, Yao Z K, Du S Y, et al. Research on relationship between elastic modules and interfacial bonding in SiC particle reinforced metal matrix composites [J]. Acta Materiae Compositae Sinica, 1998, 15(2): 1-5.
[11] Lutz M P, Monteiro P J M, Zimmerman R W. Inhomogeneous interfacial transition zone model for the bulk modulus of mortar [J]. Cement and Concrete Research, 1997, 27(6): 1113-1122.
[12] Stroeven M. Discrete Numerical Modelling of Composite Materials [M]. Delft: Meinema BV, 1999. 79-136.
[13] Ramesh G, Sotelino E D, Chen W F. Effect of transition zone on elastic moduli of concrete materials [J]. Cement and Concrete Research, 1996, 26(4): 611-622.
[14] Neubauer C M, Jennings H M. A three-phase model of the elastic and shrinkage properties of mortar [J]. Advanced Cement Based Materials, 1996, 4(1): 6-20.
[15] Zheng J J, Li C Q. Three-dimensional aggregate density in concrete with wall effect [J]. ACIMaterials Journal, 2002,99(6): 568-575.
[16] Zheng J J, Li C Q, Jones M R. Aggregate distribution in concrete with wall effect [J]. Magazine of Concrete Research, 2003, 55(3): 257-265.
[17] Zheng J J, Li C Q, Zhao L Y. Simulation of two-dimensional aggregate distribution with wall effect [J]. Journal of Materials in Civil Engineering, 2003, 15(5): 506-510.
[18] 姜璐,郑建军.混凝土界面体积百分比的计算方法[J].浙江工业大学学报,2004,32(2):163-167.Jiang L, Zheng J J. A method of computing the volume fraction of interfacial transition zone in concrete [J]. Journal of Zhejiang University of Technology, 2004, 32 (2): 163 -167.
[19] Zheng J J. Mesostructure of Concrete-Stereological Analysis and Some Mechanical Implications [M]. Delft: Delft University Press, 2000. 9-30.
[20] Stock A F, Hannant D J, Williams R I T. The effect of aggregate concentration upon the strength and modulus of elasticity of concrete [J ]. Magazine of Concrete Research,1979, 31(109): 225-234.
[21] Wang J A, Lubliner J, Monteiro P J M. Effect of ice formation on the elastic moduli of cement paste and mortar [J].Cement and Concrete Research, 1988, 18(6): 874-885.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%