采用化学共沉淀法制备了Gd3+掺杂的Mn-Zn铁氧体微粒,并通过XRD、FTIR、VSM等研究了掺杂量对基体材料结构、磁性能及在外磁场作用下磁热效应的影响.结果表明,适量Gd3+的掺杂可以有效改善Mn-Zn铁氧体的磁性能和磁热效应,成分为Mn0.4Zn0.6Gd0.06Fe1.94O4的铁氧体粉体的粒径约为20nm,具有最高的饱和磁化强度和矫顽力,50mg的该样品与1mL水形成的悬浮液,在频率为60kHz的外磁场诱导下,升温可达31℃,显示出较高的磁热性能,有望作为肿瘤热疗的内加热材料.
参考文献
[1] | Konishi K,Maehara T,Kamimori T,et al.J.Magn.Magn.Mater.,2004,272-276:2428-2429. |
[2] | Kim D H,Kim K N,Kim K M,et al.IEEE Trans.Magn.,2004,40:2985-2987. |
[3] | Hilger I,Hergt R,Kaiser W A.,Magn.Magn.Mater.,2005,293:314-319. |
[4] | 王煦漫,古宏晨,杨正强,等.功能材料,2005,36(4):507-509. |
[5] | Park J H,Im K H,Lee S H,et al.J.Magn.Magn.Mater.,2005,293:328-333. |
[6] | Ma M,Wu Y,Gu N,et al.,Magn.Magn.Mater.,2004,268:33-39. |
[7] | Upadhyay R V,Mehta R V,Parekh K,et al.J.Magn.Magn.Mater.,1999,201:129-132. |
[8] | 祁景玉.X射线结构分析,第一版.上海;同济大学出版社,2003.100-102. |
[9] | Rezlescu N,Rezlescu E,Popa P D,et al.,Alloys Compd.,1998.275-277:657-659. |
[10] | Hemeda O M,Said M Z,Barakat M M.J.Magn.Magn.Mater.,2001,224:132-142. |
[11] | Chandrasekaran G,Selvanandan S,Manivannane K.J.Mater.Sci-Mater.Electro.,2004,15:15-18. |
[12] | 徐志刚,程福祥,周彪等,科学通报,2000,9:1837-1841. |
[13] | Rath C,Anand S,Das R P,et al.J.Appl.Phys.,2002,91:2211-2215. |
[14] | Sattar A A,Wafik A H,Shokrofy K M,et al.Phys.Stat.Sol.(a),1999,171:563-569. |
[15] | Sattar A A,El-Sayed H M,El-Shokrofy K M,et al.J.Appl.Sci.,2005,5:162-168. |
[16] | 高汝伟.物理,1997,26:538-541. |
[17] | 蔡小军,吴知方,黄文旵.建筑材料学报,2004,7:350-353. |
[18] | Kim D H,Lee S H,Kim K N,et al.,Magn.Magn.Mater.,2005,293:320-327. |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%