欢迎登录材料期刊网

材料期刊网

高级检索

采用等离子体浸没离子注入沉积(PⅢ-D)在不锈钢基底上合成TiN薄膜.对沉积TiN薄膜后的不锈钢试样进行拉伸变形实验,扫描电子显微镜(SEM)原位观察表明在较大塑性变形量下氮化钛薄膜没有剥落和裂纹出现.采用划痕法测得薄膜与基体间有较强的结合力.薄膜的纳米压痕测试显示出很高的纳米硬度和弹性模量值.通过对合成TiN薄膜的TEM结构测试、AFM表面观察、AES成分结果分析,认为该合成薄膜的纳米级晶粒尺寸、致密的表面质量以及成分沿深度的分布是其具有优异的抗塑性变形性能以及高的结合强度的原因.

参考文献

[1] Hu J, Ameen M, Leusink G, et al. Thin Solid Films, 1997, 308-309: 589-593.
[2] Dion I, Rouais F, Ll Trut, el al. Biomaterials, 1993, 14 (3): 169-176.
[3] Raimondi M T, Pietrabissa R. Biomaterials, 2000, 21 (9): 907-913.
[4] Huang Nan, Chen Yuan-ru, Cai Guang-jun, el al. Surf. & Coat. Technol., 1996, 99: 127-131.
[5] Wakai F, Kodoma Y, Sakaguchi S, et al. MRS Conference Proc. of International Meeting on Advanced Materials, Pittsburgh, PA: Materials Research Society, 1989. 7.
[6] Glaiter H. Progress in Mater. Sci., 1989, 33: 223.
[7] 张立德牟季美.纳米材料和纳米结构.科学出版社.2001.260-267.
[8] Wakai F, Kato H. Adv. Ceramic Mater., 1988, 3 (1): 71-78.
[9] Patsalas P, Charitidis C, Logothetidis S. Surf. & Coat. Technol., 2000, 125: 335-340.
[10] Chou Wen-Jun, Yu Ge-Ping, Huang Jia-Hong. Surf. & Coat. Technol., 2001, 140: 206-214.
[11] Ljungcrantz H, Oden M, Hultaman L1, et al. J. Appl. Phys., 1996, 80: 6725-6731.
[12] Wang C M, Mitomo M, et al. J. American Ceramic Society, 1997, 80 (5): 1213-1221.
[13] Leng Y X, Sun H, Yang P, et al. Thin Solid Films, 2001, 398-399: 471-475.
[14] Oliver W C, Pharr G M. J. Mater. Res., 1992, 7 (4): 1564-1573.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%