欢迎登录材料期刊网

材料期刊网

高级检索

烧结致密的α-SiC在静态空气气氛中经1200℃×10h氧化,在其表面形成一层致密的氧化膜,该层氧化膜具有β-方石英晶体结构.氧化膜的生长由O2通过SiO2晶格间隙的扩散控制.SiC/Fe界面反应剧烈,界面稳定性极差.SiC表面氧化能有效阻挡该界面反应,提高其稳定性.900℃以下长时间保温,氧化SiC/Fe界面十分平直,无明显反应的迹象,界面十分稳定.但随着温度的升高,界面稳定性越来越低,在局部区域内开始发生反应,并逐渐扩展到整个界面,最终导致氧化膜遭到破坏,失去阻挡界面反应的作用.氧化膜与SiC、Fe热膨胀系数不匹配所造成的应力集中,以及氧化膜中存在的孔隙可能是导致氧化膜在热处理过程中遭到破坏的主要原因.

The dense oxide layer is formed on the surface of sintered α-SiC after annealing at 1200℃ for 10h in a stationary air ambient,and its crystal structure is of β-cristobalite. The growth of the oxide layer is controlled by the diffusion of oxygen molecules through the interstitial site in SiO2. The solid state reaction between SiC and Fe is severe,and significantly decreases the interface stability of SiC/Fe. The oxidation of SiC has a great effect on the interface stability of SiC/Fe. At temperatures below 900℃,the interface of oxidized SiC/Fe is always smooth and remains intact after annealing for a long time. It shows that the oxide layer can hold back the interface reaction and improve the interface stability,permanently. But,the interface stability of O-SiC/Fe ecreases corresponding to raising the annealing temperature. The reaction first takes place at the “points” of the interface,and then,wholly extends along the interface. It results that the effect of the oxide layer as a reaction barrier is lost entirely. The main reasons for the oxide layer invalid after annealing at the temperature above 900℃ may be the voids existed in the oxide layer,and the stress concentration caused by the mismatch of the heat expansion coefficients between the oxide layer and SiC,Fe.

参考文献

[1] NaKa N,Feng J C,Schuster J C.Metall.& Mater.Trans.,1997,28A: 1385-1390.
[2] Kazuya Kurokawa,Ryukichi Nagasaki.In Sintering'87,vol.2.London,New York & Tokyo: Elsevier Applied Science.1987.1397-1402.
[3] Chiepers R C,Van Loo Frans J J,With de Gijsbertus.J.Am.Ceram.Soc.,1988,71 (6): c284-c287.
[4] Ibrahim I A,Mohamed F A,Lavernia E J.J.Mater.Sci.,1991,26: 1137-1156.
[5] Lim C S,Nickel H,Naoumidis A,Gyurmati E.J.Mater.Sci.,1996,31: 4241-4247.
[6] Howe J M.International Materials Review,1993,38 (5): 233-256.
[7] Ribes H,Suery M,Lesperance G.Metall.Trans.,1990,21A: 2489-2496.
[8] Warren R,Andersson C-H.Composites,1984,15 (2): 101-111.
[9] Sen S,Dhindaw B K,Stefanesen D M.Mater.Sci.& Eng.,1994,A174: 207-216.
[10] 于家康.稀有金属材料与工程,1996,25 (6): 14-18.
[11] Reeves A J,Dunlop H,Clyne T W.Metall.Trans.,1992,23A: 977-988.
[12] Costello J A,Tressler R E.J.Am.Ceram.Soc.,1986,69 (9): 674-681.
[13] Zheng Z(郑治祥),Tressler R E,Spear K E.Corrosion Science,1992,33 (4): 557-567.
[14] Zheng Z(郑治祥),Tressler R E,Spear K E.Corrosion Science,1992,33 (4): 545-556.
[15] Schneider B,Guette A,Naslain R.J.Mater.Sci.,1998,33: 535-547.
[16] Zheng Z(郑治祥),Tressler R E,Spear K E.J.Electrochem.Soc.,1990,137 (3): 854-858.
[17] Narushima T,Goto T,Hirai T,et al.Mater.Trans.JIM,1997,38 (10): 821-835.
[18] 梅志,顾明元,吴人洁.金属学报,1997,33 (5): 557-560.
[19] Chou T C,Joshi A,Wadswortn J.J.Mater.Res.,1991,4: 796-809.
[20] Murch G E,Nowick A S.In Diffusion in Crystalline Solids.Orlando,Florida: Academic Press,Inc.1984.189.
[21] Weast C,Astle M J,Beyer W H.In CRC Handbook of Chemistry and Physics,69th ed.Roca Raton,Florida: CRC Press Inc.19881989.D71.
[22] 叶大伦.实用无机物热力学手册.北京: 冶金工业出版社,1981.
[23] Martinelli A E,Drew R A L.Mater.Sci.& Eng.,1995,A191: 239-247.
[24] 酒井昌宏,渡边胜也.日本金属学会志,1981,45: 624-630.
[25] Nakahashi N,Shikokane M,Takeda H.Surface,1986,24: 595-603.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%