欢迎登录材料期刊网

材料期刊网

高级检索

以5×10-4s-1(慢速拉伸)和2×10-2 s-1(快速拉伸) 2种应变速率对EN1.4318(AISI301L)和EN1.4301(AISI304)冷轧和退火态奥氏体不锈钢板试样(厚度为2 mm)进行了拉伸实验,用TEM,SEM以及XRD分析应变诱发α'-马氏体转变机制和转变量.结果表明,相同应变速率拉伸时,EN1.4318钢的α'-马氏体转变量远远高于EN1.4301钢;快速拉伸可明显抑制冷轧EN1.4318钢中α'-马氏体的转变速率,降低硬化率.在均匀变形阶段,2种钢中α'-马氏体的转变速率和转变量比慢速拉伸时有不同程度地下降,而且冷轧比退火态更显著.奥氏体稳定性较高的EN1.4301钢,常温拉伸α'-马氏体转变饱和值低于0.3(体积分数),增强效果小,快速拉伸导致较快发生塑性失稳和均匀延伸率大幅降低;而对于层错能低、α'-马氏体饱和值很高的EN1.4318钢,快速托伸则使抗拉强度大幅降低,而且下降的幅度随α'-马氏体饱和值增加而增大;EN1.4318钢的应变速率敏感性远大于EN1.4301钢.

参考文献

[1] Lichtenfeld J A,Mataya M C,Tyne C J V.Metall Mater Trans,2006; 37A:147
[2] Talonen J,Nenonen P,Pape G,Hanninen H.Metall Mater Trans,2005; 36A:421
[3] Kumar A,Singha L K.MetaU Mater Trans,1989; 20A:2857
[4] Talonen J,Hanninen H.Acta Mater,2007; 55:6108
[5] Byun T S,Hashimoto N,FarreU K.Acta Mater,2004; 52:3889
[6] Angel T.J Iron Steel Inst,1954; 177:165
[7] Nohara K,Ono Y,Ohasi N.J Iron Steel Inst,1977; 63:772
[8] Schramm R E,Reed R P.MetaU Trans,1975; 6A:1345
[9] Liu W,Li Q,Jiao D Z,Zheng Y,Li G P.Acta Metall Sin,2008; 44:775 (刘伟,李强,焦德志,郑毅,李国平.金属学报,2008;44:775)
[10] Zhang H W,Hei Z K,Liu G,Lu J,Lu K.Acta Mater,2003; 51:1871
[11] Lee W S,Lin C F.Metall Mater Trans,2002; 35A:2801
[12] Byun T S.Acta Mater,2003; 51:3063
[13] Spencer K.PhD Thesis,McMaster University,Ontario,2002
[14] Ferreira P J,Sande J B V,Amaral M.MetaU Mater Trans,2004; 35A:3091
[15] Sinclair C W,Embury J D,Weatherly G C.Mater Sci Eng,1999; A272:90
[16] Han H N,Lee C G,Oh C S,Lee T H,Kim S J.Acta Mater,2004; 52:5203
[17] Olson G B,Cohen M.Metall Trans,1982; 13A:1907
[18] Olson G B,Azrin M.Metall Trans,1978; 9A:731
[19] Sinclair C W,Hoagland R G.Acta Mater,2008; 56:4160
[20] De A K,Speer J G,Matlock D K,Murdock D C,Mataya M C,Comstock R J.MetaU Mater Trans,2006; 37A:1875
[21] Das A,Sivaprasad S,Ghosh M,Chakraborti P C,Tarafder S.Mater Sci Eng,2008; A486:283
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%