欢迎登录材料期刊网

材料期刊网

高级检索

研究了54SiCrV6和54SiCr6两种洁净高强弹簧钢的超高周疲劳行为,并利用FESEM和EPMA对疲劳断口进行了观察.实验结果表明,在高应力幅区,两种弹簧钢的疲劳破坏均起源于表面基体;而在低应力幅长寿命区,疲劳开裂均发生在试样内部.54SiCrV6钢的S-N曲线为典型的台阶式曲线,在109循环周次内,其疲劳极限消失;而54SiCr6钢存在疲劳极限.疲劳断口分析表明,54SiCrV6钢内部破坏是由钢中小夹杂物聚集引起的,而在54SiCr6钢中则起源于碳化物的偏聚.临界夹杂物尺寸的估算表明,当高强弹簧钢中的夹杂物尺寸大于临界夹杂物尺寸时,其疲劳极限消失.

参考文献

[1] Mukamami Y,Kawakami K,Saito M.Trans Jpn Soc Spring Res,1990; 35:1
[2] Larsson M,Melander A,Blom R,Preston S.Mater Sci Technol,1991; 7:998
[3] Hui W J,Dong H,Weng Y Q.J Iron Steel Res,2001; 13:67(惠卫军,董瀚,翁宇庆.钢铁研究学报,2001;13:67)
[4] Harada Y,Mori K.J Mater Process Technol,2005; 15:498
[5] Ai J H,Zhao T C,Gao H J,Hu Y H,Xie X S.J Mater Process Technol,2005; 30:390
[6] Nam W J,Lee C S,Ban D Y.Mater Sci Eng,2000; A289:8
[7] Shin J C,Lee S H,Ryu J H.Int J Fatigue,1999; 21:571
[8] Abe T,Furuya Y,Matsuoka S.Fatigue Fract Eng Mater Struct,2004; 27:159
[9] Furuya Y,Abe T,Matsuoka S.Fatigue Fract Eng Mater Struct,2003; 26:641
[10] Zhang J M,Yang Z G,Zhang J F,Li G Y,Li S X,Hui W J,Weng Y Q.Acta Metall Sin,2005; 41:145(张继明,杨振国,张建锋,李广义,李守新,惠卫军,翁宇庆.金属学报,2005;41:145)
[11] Shiozawa K,Lu L,Ishihara S.Fatigue Fract Eng Mater Struct,2001; 24:781
[12] Yang Z G.,Li S X,Zhang J M,Zhang J F,Li G Y,Li Z B,Hui W J,Weng Y Q.Acta Mater,2004; 52:5235
[13] Zhang J M,Zhang J F,Yang Z G,Li G Y,Yao G,Li S X,Hui W J,Weng Y Q.Mater Sci Eng,2005; A394:126
[14] Murakami Y,Nomoto T,Ueda T.Fatigue Fract Eng Mater Struct,2000; 23:893
[15] Wang Q Y,Berara J Y,Rathery S,Bathias C.Fatigue Fract Eng Mater Struct,1999; 22:673
[16] Lankford J.Int Met Rev,1977; 22:221
[17] Larsson M Melander A,Nordgren A.Mater Sci Technol,1993; 9:235
[18] Lorén S.Int J Fatigue,2003; 25:129
[19] Murakami Y,Usuki H.Trans Jpn Soc Mech Eng,1989;55A:213
[20] Murakami Y.Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions.Amsterdam:Elsevier,2002:91
[21] Yang Z G,Li S X,Zhang J M,Zhang J F,Li G Y,Li Z B,Hui W J,Weng Y Q.Acta Mater,2004; 52:5235
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%