欢迎登录材料期刊网

材料期刊网

高级检索

Cu8Zr3和Cu10Zr7相中存在Cu8Zr5和Cu6Zr5团簇结构,它们与Cu-Zr系的两个深共晶点Cu61.8Zr38.2和Cu56Zr44对应. Cu64Zr36是Cu-Zr二元系具有最大玻璃形成能力的成分点.依据形成块体非晶的"变电子浓度线判据",以Cu64Zr36,Cu61.8Zr38.2和Cu56Zr44 3个二元成分为出发点,以Nb元素为第三组元,建立变电子浓度线(Cu64Zr36)100-xNbx,(Cu61.8Zr38.2)100-xNbx和(Cu56Zr44)100-xNbx.采用分步熔炼法,由铜模吸铸法制备直径为3 mm的合金棒.块体非晶的玻璃形成区及玻璃形成能力由XRD和热分析确定.结果表明,添加少量Nb(原子分数,x≤3)可以显著提高Cu-Zr二元系的玻璃形成能力.具有最大Tg/Ti值(0.626)的成分Cu60.3Zr37.2Nb2.5位于具有Cu8Zr5团簇和最深共晶点的Cu61.8Zr38.2向第三组元Nb的连线上.结合Cu-Zr二元体系的团簇结构讨论了Cu-Zr-Nb系块体非晶的形成.

参考文献

[1] Inoue A, Zhang T, Masumoto T. Mater Trans JIM, 1991;31:177
[2] Zhang T, Inoue A, Masumoto T. Mater Trans JIM, 1991;32:1005
[3] Peker A, Johnson W L. Appl Phys Lett, 1993; 63:2342
[4] Kim S G, Inoue A, Masumoto T. Mater Trans JIM, 1991;31:929
[5] Bruck H A, Rosakis A J, Johnson W L. J Mater Res, 1996;11:503
[6] Gilbert C G, Ritchie R O, Johnson W L. Appl Phys Lett,1997; 71:476
[7] Inoue A, Zhang W, Zhang T, Kurosaka K. Acta Mater,2001; 49:6645
[8] Inoue A, Zhang W, Zhang T, Kurosaka K. Mater Trans,2001; 42:1149
[9] Inoue A, Zhang W. Mater Trans, 2002; 43:2921
[10] Zhang Y, Zhao D Q, Wang R J, Wang W H. Acta Mater,2003; 51:1971
[11] Asami K, Qin C L, Zhang T, Inoue A. Mater Sci Eng,2004; A375-377:235
[12] Wang Y M, Shek C H, Qiang J B, Wong C H, Chen W R,Dong C. Scr Mater, 2003; 48:1525
[13] Wang Y M, Zhang X F, Qiang J B, Wang Q, Wang D H,Li D J, Shek C H, Dong C. Scr Mater, 2004; 50:829
[14] Wang Y M, Shek C H, Qiang J B, Wong C H, Wang Q,Zhang X F, Dong C. Mater Trans, 2004; 45:1180
[15] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F,Dong C. Acta Mater, 2005, in press
[16] Inoue A, Zhang W. Mater Trans, 2004; 45:584
[17] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E. Appl Phys Lett, 2004; 84:4029
[18] Xu D H, Lohwongwatana B, Duan G, Johnson W L, Garland C. Acta Mater, 2004; 52:2621
[19] Davies H A. In: Cantor B, ed., Rapidly Quenched Metals,Vol.1, Part Ⅲ, London: The Metals Society, 1978:1
[20] Lu Z P, Tan H, Li Y, Ng S C. Scr Mater, 2000; 42:667
[21] Wang Y M, Qiang J B, Wong C H, Shek C H, Dong C. J Mater Res, 2003; 18:642
[22] Wang Q, Wang Y M, Qiang J B, Zhang X F, Wang D H,Dong C. Acta Metall Sin, 2004; 40:1183(王清,王英敏,羌建兵,张新房,王德和,董闯.金属学报,2004;40:1183)
[23] Inoue A. Acta Mater, 2000; 48:279
[24] Waniuk T A, Schroers J, Johnson W L. Appl Phys Lett,2001; 78:1213
[25] Inoue A, Zhang T, Kim Y H. Mater Trans JIM, 1997; 38:749
[26] Zhang T, Inoue A. Mater Trans JIM, 1998; 39:1230
[27] Zhang Y, Zhao D Q, Pan M X, Wang W H. J Non-Cryst Solids, 2003; 315:206
[28] Buschow K H L. J Phys F: Met Phys, 1984; 14:593
[29] Sakata M, Cowlam N, Davies H A. In: Masumoto M,Suzuki K, eds., Rapidly Quenched Metals, Vol.1, Sendai,Japan Inst Met, 1982:327
[30] Sakata M, Cowlam N, Davies H A. J Phys F: Met Phys,1981; 11:L157
[31] Scott M G. Scr Metall, 1981; 15:1073
[32] Chen L C, Spaepen F. Nature, 1988; 336:366
[33] Reichert H, Klein O, Dosch H, Denk M, Honkimaki V,Lippmann T, Reiter G. Nature, 2000; 408:839
[34] Wang Q, Qiang J B, Wang Y M, Xia J H, Zhang X F,Dong C. Mater Sci Forum, 2005; 475-479:3381
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%