采用Mishin嵌入原子势,通过分子动力学方法模拟了金属Cu原子体系的体熔化和表面熔化行为,分析了体熔化过程中系统结构组态和能量变化以及表面熔化过程中固-液界面迁移情况.模拟结果表明:在体熔化过程中,结构组态与能量在1585 K处发生突变;在表面熔化过程中,固-液界面在1380 K保持静止.两种熔化过程的不同发生机制是导致体熔点1585 K高于热力学熔点1380 K的原因.在实际熔化中,表面熔化处于支配地位,实验测量的是热力学熔点.得到的热力学熔点与实验结果吻合良好,验证了本文所采用方法是正确和有效的,同时也说明了Mishin嵌入原子势适合处理复杂无序体系.
参考文献
[1] | Daw M S, Baskes M I. Phys Rev Lett, 1983; 50:1285 |
[2] | Daw M S, Baskes M I. Phys Rev, 1984; 29B: 6443 |
[3] | Ackland G J, Tichy G, Vitek V, Finnis M W. Philos Mag,1987; 56A: 735 |
[4] | Finnis M W, Sinclair J E. Philos Mag, 1984; 50A: 45 |
[5] | Holender J M. Phys Rev, 1990; 41B: 8054 |
[6] | Zhang T, Zhang X R, Guan L, Qi Y H, Xu C Y. ActaMetall Sin, 2004; 40:251(张弢,张晓茹,管立,齐元华,徐昌业.金属学报,2004;40:251) |
[7] | Wang L, Bian X F, Li H. Chin J Chem Phys, 2000; 13:544(王丽,边秀房,李辉.化学物理学报,2000;13:544) |
[8] | Lutsko J F, Wolf D, Phillpot S R, Yip S. Phys Rev, 1989;40B: 2841 |
[9] | Foiles S M, Adams J B. Phys Rev, 1989; 40B: 5909 |
[10] | Kojima R, Susa M. High Temp High Pressures, 2002; 34:639 |
[11] | Born M. J Chem Phys, 1939; 7:591 |
[12] | Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F, Kress J D. Phys Rev, 2001; 63B: 224106 |
[13] | Waseda Y. The Structure of Non-Crystalline Materials.New York: McGraw-Hill, 1980:292 |
[14] | Rapaport D C. The Art of Molecular Dynamics Simulation. Cambridge: Cambridge University Press, 1995:90 |
[15] | Paterlini M G, Ferguson D M. J Chem Phys, 1998; 236:243 |
[16] | Andersen H C. J Chem Phys, 1980; 72:2384 |
[17] | Wolf D, Okamoto P R, Yip S, Lutsko J F, Kluge M. J Mater Res, 1990; 5:286 |
[18] | Broughton J Q, Gilmer G H, Jackson K A. Phys Rev Lett,1982; 49:1496 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%