欢迎登录材料期刊网

材料期刊网

高级检索

研究了抗热腐蚀铸造镍基高温合金K52在室温和900℃的低周疲劳行为.对循环应力-应变数据和应变-疲劳寿命数据进行了分析,给出了K52合金在此温度下的疲劳参数.合金的循环应力响应行为在室温下呈现循环硬化,而在900℃时则呈现循环软化,原因在于循环形变过程中位错之间以及位错与析出相之间的相互作用.疲劳断口宏观和微观分析表明:裂纹主要萌生于试样表面或靠近表面的缺陷处;裂纹形成后垂直于加载轴方向扩展,试样呈穿晶断裂.

参考文献

[1] Miller H E, Chambers W L. In: Sims C T, Ctoloff N S,Hagel W C, eds., Superalloy Ⅱ, New York: John-Wiley & Sons, 1987:18
[2] Reuchet J, Remy L. Mater Sci Eng, 1983; 58:19
[3] Bhanu Sankara Rao K, Schiffers H, Schuster H, Nickel H.Metall Trans, 1988; A19:359
[4] Valsan M, Shastry D H, Bhanu Sankara Rao K, Mannan S L. Metall Trans, 1994; 25A: 159
[5] Li S X, Smith D J. Fatigue Fract Eng Mater Struct, 1995;18:631
[6] Lerch B A, Gerold V. Metall Trans, 1987; 18A: 2135
[7] Valsan M, Paranewaran P, Bhanu Sankara Rao K, Vijayalakshmi M, Mannan S L, Sastry D H. Metall Trans, 1992;23A(6): 1751
[8] Gayda J, Miner R V. Int J Fatigue, 1983; 5:135
[9] Burke M A, Beck C G. Metall Trans, 1984; 15A: 661
[10] Standard E606. In: Annual Book of ASTM Standards,Philadelphia, PA: ASTM, 1996; 03.01
[11] Chen L J, Wang Z G, Yao G, Tian J F. Acta Metall Sin,1999; 35:1144(陈立佳,王中光,姚戈,田继丰.金属学报,1999;35:1144)
[12] Yang F M,Sun X F,Guan H R,Hu Z Q.Acta Metall Sin,2002;38:1047(杨富民,孙晓峰,管恒荣,胡壮麒.金属学报,2002;38:1047)
[13] Guo J T, Ranucci D, Picco E. Mater Sci Eng, 1983; 58:127
[14] Guo J T, Ranucci D, Picco E, Strocchi P M. Int J Fatigue,1984; 6:95
[15] Hwang S K, Lee H N, Yoon B H. Metall Trans, 1989; 20A:2793
[16] Antolovich S D, Liu S, Baur R. Metall Trans, 1981; 12A:473
[17] Calabrese C, Larid C. Mater Sci Eng, 1974; 13:141
[18] Remy L, Reuchet J. Mater Sci Eng, 1983; 58:19
[19] Fournier D, Pineau A. Metall Trans, 1977; 8A: 1095
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%