欢迎登录材料期刊网

材料期刊网

高级检索

外加应力使贝氏体相变形核率增大,等温孕育期缩短,即使所加应力远低于母相的屈服强度.由于钢中γ→α+γ'的形核驱动力较大(约为kJ/mol数量级),贝氏体相变的膨胀应变能很小,过小的外加应力对形核率的影响甚微.考虑在外加应力的影响下,会使界面能量有所下降,也可能发生碳原子的再分布,偏聚在晶界或其它缺陷,甚至碳化物析出都会显著地增大形核率和缩短孕育期,有侍进一步实验给予证明无应力下,贝氏体相变动力学可以用Avrami的等温相变方程来表述;应力下则符合应力下铁索体及珠光体相变的动力学模型(经修改的Avrami方程).形变奥氏体促发贝氏体相变,但随后会发生奥氏体的力学稳定化,其机制可能和马氏体相变时的奥氏体力学稳定化不完全相同,仅形变形成的位错阻碍贝氏体以一定位向长大,使相变动力学迟缓.贝氏体相变时奥氏体力学稳定化的模型有待建立.

参考文献

[1] Denis S, Gautier E, Simon A, Beck G. Mater Sci Technol,1985; 1:805
[2] Duckworth W E. J Met, 1966; 18:915
[3] Guarnieri G J, Kanter J J. Trans ASM, 1948; 40:1147
[4] Howard R T, Cohen M. Trans AIME, 1948; 176:384
[5] Radcliffe S V, Rollason E C. J Iron Steel Inst, London,1959; 191:56
[6] Goodenow R H, Barkalow R H, Hehemann R F. Iron Steel Inst Spec Rep No.95, London, 1969:135
[7] Ericsson C E, Bhat M S, Parker E R, Zackay V F. Metall Trans, 1976; 7A: 1800
[8] Ko T. J Iron Steel Inst, London, 1953; 175:16
[9] Hawkins M J, Barford J. J Iron Steel Inst, London, 1972;210:97
[10] Cottrell A H. J Iron Steel Inst, London, 1945; 151:93
[11] Jepson M D, Thompson F C. J Iron Steel Inst, London,1949; 162:49
[12] Porter L E, Rosenthal P C. Acta Metall, 1959; 7:504
[13] Radcliffe S V, Schatz M, Kulin S A. J Iron Steel Inst,London, 1963; 201:143
[14] Nilan T G. TMS AIME, 1967; 239:898
[15] Drozdov B Y, Kogan L I, Entin R I. Phys Met Metallogr,1962; 13:135
[16] Umemoto M, Bando S, Tamura I. In: Tamura I et al eds.,Proc Int Conf Martensitic Transformations 1986, Sendai,Japan: The Jpn Inst Met, 1987:595
[17] BhadeshiaH K D H, David S A, Vitek J M, Read RW.Mater Sci Technol, 1991; 7:686
[18] Matsuzaki A, Bhadeshia H K D H, Harade H. Acta Metall Mater, 1994; 42:1081
[19] Shipway P H, Bhadeshia H K D H. Mater Sci Eng, 1995;A201:143
[20] Freiwillig R, Kudrman J, Chráska P. Metall Trans, 1976;7A: 1091
[21] Olson G B, Cohen M. Metall Trans, 1976; 7A: 1897, 1905,1915
[22] Xu Z Y (Hsu T Y). Martensitic Transformation and Martensite. 2nd ed., Beijing: Science Press, 1999: 593,700(徐祖耀.马氏体相变与马氏体.第2版,北京:科学出版社,1999:593,700)
[23] Bhadeshia H K D H. Mater Sci Eng, 1999; A273-275:58
[24] Bhadeshia H K D H. Bainite in Steels. 2nd ed., Cambridge: The Cambridge University Press, 2001:207
[25] Tsuzaki K, Ueda T, Fujiwara K, Maki T. In: Igata N,Kimpara I, Kishi T, Nakata E, Okura A, Uryn T, eds.,New Materials and Processes for the Future, Proc 1st Japan Int SAMPE Symp and Exhibition, Chiba, Japan:Society for the Advancement of Materials and Process Engineering, 1989:799
[26] Singh S B, Bhadeshia H K D H. Mater Sci Technol, 1996;12:610
[27] Yang J R, Huang C Y, Hsiech W H, Chiou C S. Mater Trans JIM, 1996; 37:579
[28] Larn R H, Yang J R. Mater Sci Eng, 2000; A278:278
[29] Lange W F Ⅲ, Enomoto M, Aaronson H I. Metall Trans,1988; 19A: 427
[30] Hsu T Y (Xu Z Y), Mou Y W. Acta Metall, 1984; 32:1469
[31] Brandes E A. Smithells Metals Reference Book. London:Butterworths, 1983:15-2
[32] Grujicic M, Zhou X W. CALPHAD, 1993; 17:383
[33] Feder J, Russell K C, Lothe J, Pound G M. Adv Phys,1966; 15:111
[34] Gao N, Liu Z, Yu Y P. Trans Mater Heat Treat, 2001;22(3): 1(高宁,刘庄,余永平.材料热处理学报,2001;.22(3):1)
[35] Ye J S.PhD Thesis,Shanghai Jiaotong University,2003(叶健松.上海交通大学博士学位论文,2003)
[36] Hsu T Y (Xu Z Y), Chen W Z. Scr Metall, 1987; 21:1289
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%