欢迎登录材料期刊网

材料期刊网

高级检索

采用Gleebe-1500热/力模拟机研究了Mg-5.6Zn-0.7Zr-0.8Nd合金在应变速率为0.1,0.01和0.002 s-1、变形温度为373-673 K、最大变形程度60%条件下的高温塑性变形行为.分析了合金流变应力与应变速率、变形温度之间的关系,计算了高温变形时变形激活能和应力指数,并观察了合金变形过程中显微组织变化情况.结果表明:Mg-5.6Zn-0.7Zr-0.8Nd合金在热变形过程中不同温度下流变应力呈现不同形式,分析可知加工硬化、动态回复和动态再结晶在不同温度和不同应变速率下各自起到了重要的作用,合金变形激活能随应变速率增加而升高.在473 K温度以上变形,合金发生明显动态再结晶且动态再结晶晶粒非常细小,晶粒尺寸为5-10 μm,从而可明显提高合金的塑性.

参考文献

[1] Raymond F D. Adv Mater Proc, 1998; (9): 31
[2] Busk R S. Magnesium Products Design. New York: Marcel Dekker, Inc., 1987:12
[3] ASM. International, Magnesium And Magnesium Alloy.Metal Park, OH: ASM, 1999:1
[4] www.intlmag.org
[5] Cahn R W. Trans by Ding D Y. Microstructures and Properties of Nonferrous Alloys. Beijing: Science Press, 1999:460(Cahn R W,丁道云译.非铁合金的结构与性能.北京:科学出版社,1999:460)
[6] American Metals Association. Metals Handbook (9). Beijing: Science Press, 1992:368(美国金属学会.金属手册(9).北京:科学出版社,1992:368)
[7] Watanabe H, Mukai T. Mater Trans JIM, 1999; 40:809
[8] Watanabe H, Mukai T. Scr Mater, 1999; 40:477
[9] Yu K, Li W X. Spec Cast Nonf Alloys, 2001; (1): 41(余琨,黎文献.特种铸造及有色合金,2001;(1):41)
[10] Yu K, Li W X. J Central South Univ Technol, 2001;(Suppl. 1): 51(余琨,黎文献.中南工业大学学报,2001;(专集1):51)
[11] Niu J T. Physical Simulation Technology of Materials During Hot Processing. Beijing: National Defense Press, 1999: 1(牛济泰.材料和热加工领域的物理模拟技术.北京:国防工业出版社,1999:1)
[12] Poirier J P. Trans by Guan D C. Plastic Deformation of Crystal. Dalian: Dalian Science and Technology University Press, 1989: 1(Poirier J P,关德村译.晶体的高温塑性变形.大连:大连理工大学出版社,1989:1)
[13] Shen J. PhD Thesis, Central South University of Technology, Changsha, 1996(沈健.中南工业大学博士学位论文,长沙,1996)
[14] Li W X, Yang J J. J Central South Univ Technol, 2000;31:56(黎文献,杨军军.中南工业大学学报,2000;31:56)
[15] Mwembela A, Konopleva E B. Scr Mater, 1997; 11:1789
[16] Polmear I J. Light Alloys: Metallurgy of Light Metals. 2nd, London: Edward Arnold, 1989: 1
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%