欢迎登录材料期刊网

材料期刊网

高级检索

采用断裂力学方法获得了纤维增强复合材料强度与脱粘长度、纤维临界长度以及纤维体积分数的定量关系.该公式较好地预测了纤维的临界长度以及强度与纤维体积分数的关系.并再现了复合材料混合定则.该公式也较好地解释了丝状复合材料强度随短期循环变形载荷与周次增加而增加的现象其原因是在循环变形中.纤维与基体界面结合强度发生变化.导致纤维临界长度与脱粘长度发生变化.从而使复合材料强度增加,但这种增加是有限的和有范围的.循环变形的发展最终导致强度下降.

参考文献

[1] Clyne T W, Withers P J. An Introduction to Metal Matrix Composites. Cambridge: Cambridge University Press,1993:166
[2] Qiao S R. Micro-Mechanical Properties of Composites.Xi'an: Northwestern Polytechnical University Press, 1997:78(乔生儒.复合材料细观力学性能.西安:西北工业大学出版社,1997:78)
[3] Ananth C R, Volei S R, Chandra N. Composites, 1998;29A: 1203
[4] Cooper G, Kelly A. In: Wenat F W ed., Mechanics of Composite Materials. London: Pergamon Press, 1970:653
[5] Yu C T. Metal Matrix Composites. Beijing: Metallurgical Industry Press, 1995:144(于春田.金属基复合材料.北京:冶金工业出版社,1995:144)
[6] Mahiou H, Beakou A. Composites, 1998; 29A: 1035
[7] Achenbach J D, Zhu H. J Mech Phys Solids, 1998; 37:381
[8] Theocaris P S, Sideris E P, Capanicolaou G. J Reinf Plast Compos, 1985; 4:396
[9] Robertson D D, Mall S. Compos Sci Technol, 1994; 52:319
[10] Liu Y N, Chu L P, He J W, Yang S L. Acta Metall Sin,2002; 38:376(柳永宁,楚丽平,何家文,杨盛良.金属学报,2002:38:376)
[11] Guo S Q, Kagawa Y. Acta Mater, 1997; 45:2257
[12] Liu Y N, Kang W, He J W, Zhu Z M. Acta Mater ComposSin, 2001; 18(4): 42(柳永宁,康伟,何家文,朱祖铭.复合材料学报,2001;18(4):42)
[13] Nader G D, James A D. JOM, 2000; 52:40
[14] Yang S L. PhD Thesis, National University of Defense Technology, Changsha, 1999(杨盛良.国防科学技术大学博士学位论文,长沙,1999)
[15] Li Z A, Jin Z H. The Fracture Theories for Pressure Vessels and Ealuation of Defects. Dalian: Dalian University of Technology Press, 1994:48(李志安,金志浩.压力容器断裂理论与缺陷评定.大连:大连理工大学出版社,1994:48)
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%