欢迎登录材料期刊网

材料期刊网

高级检索

研究了短纤维/晶须增强金属基复合材料在弹塑性变形中的应变分布,得到了增强体与基体应变的统计规律,提出了短纤维/晶须增强金属基复合材料的材料模型,导出了相应的弹塑性本构关系,预测了硼酸铝晶须增强Al基([AlBO]w/Al)复合材料单轴拉伸应力应变关系,结果与实验吻合良好.

参考文献

[1] Eshelby J D. Proc Roy Soc, 1957,A241:376
[2] Hill R. J Mech Phys Solids, 1965,13:213
[3] Budiansky J C. J Mech Phys Solids, 1965,13:223
[4] Roscoe R A. Brit J Appl Phys, 1952,3:267
[5] Boland F, Colin C, Salmon C, Delannay F. Acta Mater,1998,46:6311
[6] Du S Y, Wang B. Meso Mechanics of Composite. Beijing: Science Press, 1998:118(杜善义,王彪复合材料细观力学.北京:科学出版社,1998:118)
[7] Kuang Z B, Gu H C, Li Z H. Mechanical Behavior of Materials. Beijing: Advanced Education Publishing, 1998:380)(匡震邦,顾海澄,李中华.材料的力学行为北京:高等教育出版社.1998:380)
[8] Smith J C. J Res National Bureau Standards, 1974,78A:355
[9] Nielsen L C, Landel R F. Mechanical Properties of Poly-mers and Composites. 2nd ed, New York: Marcel Dekker, 1994:180
[10] Withers P J, Chorley E M, Clyne T W. Mater Sci Eng,1991,A135:173
[11] Liang N G, Cheng P S. Sci China, 1993,36:692
[12] Liu Q Y, Liang N G, Liu X Y. Chin J Aeronautics, 2000,13(3):182 (in press)
[13] Liu X Y, Liu Q Y, Liang N G. Chin J Aeronautics, 2000,13(3):188 (in press)
[14] Liu X Y, Yan W D, Liang N G. Met Mater, 1998, 4:242
[15] Ruess A. Z Angew Math Mech, 1929,9:49
[16] Voigt W. Wied Ann, 1889,38:573
[17] Gui X M, Li C H, Cai C Z. Mathematics Handbook. Shanghai: Shanghai Science Popularization Press, 1993:468(归行茂,李重华,柴常智数学手册上海:上海科学普及出版社,1993:468)
[18] Liang N G, Liu H Q, Wang T C. Sci China, 1998,41:887
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%