建立了GTA焊接过程电弧与熔池双向耦合统一数学模型.该模型考虑了熔池自由表面变化对电弧和熔池的影响,并通过不断更新自由表面形状实现了电弧与熔池相互耦合.电弧和熔池的两组控制及辅助方程采用有限差分法进行求解.计算中采用了适体坐标系以确定不断变化的自由表面形状用所建模型对304不锈钢材料的定点GTA焊接过程进行了数值计算分析,取得了良好效果.
参考文献
[1] | Choo R T C, Szekely J, Westhoff R C. Metall Trans, 1992,23B: 357 |
[2] | Kim W H, Fan H G, Na J S. Metall Trans, 1997,18B: 679 |
[3] | Lowke J J. In: Ushio M ed, Proceedings of International Symposium on Theoretical Prediction In Joining and Welding, Joining and welding Research Institute, Osaka University, 1996:1 |
[4] | Choo RT C, Szekely J, WesthoffR C. Metall Trans, 1992,23B: 371 |
[5] | Fan H G, Kovacevic R. J Phys D: Appl Phys, 1998,31:2929 |
[6] | Lei Y P, Shi Y W, Murakawa H, Ueda Y. In: Cerjak L, Bhadeshia H eds, Mathematical Modelling of Weld Phenomena 4, Book695, The Institute of Materials, London,1998:89 |
[7] | Kim W H, Fan H G, Na S J. Numer Heat Transfer, 1997,A32:633 |
[8] | Goldak J, Bibbt M, Moore J, Patel B. Metall Trans, 1986,17B: 587 |
[9] | Tao W Q. Calculation of Heat Transfer. Xi'an: Xi'an Jiaotong University Press, 1995:507(陶文铨.数值传热学.西安:西安交通大学出版社,1995:507) |
[10] | Lei Y P, Shi Y W. Numer Heat Transfer, 1994,B26:455 |
[11] | Murphy A B, Arundell C J. Plasma Chem Plasma Proc,1994,14:451 |
[12] | Lei Y P. Ph D Thesis, Xi'an: Xi'an Jiaotong University, 1994(雷永平焊接熔化与凝固过程数值模拟,博士学位论文,西安交通大学,1994) |
[13] | Zacharia T, David A S, Vitek J M, Debroy T. Weld J , 1989,69: 499s |
[14] | Winkler C, Arnberg G, Inoue H, Koseki T. In: Cerjak L,Bhadeshia H ed, Mathematical Modelling of Weld Phenomena 4, Book695, The Institute of Materials, London,1998:37 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%