欢迎登录材料期刊网

材料期刊网

高级检索

运用空间轴对称弹塑性有限元方法,研究了短纤维增强金属基复合材料拉伸应力场分布.研究表明,基体和纤维的应力分布及基体塑性行为具有明显的不均匀性,材料参数(纤维长径比、纤维体积分数、纤维根间距和基体应变硬化指数)以不同方式通过影响应力传递、基体约束变形和基体应变硬化进而影响应力场分布.

参考文献

[1] Kelly A.Strong Solids.Oxford:Clarendon Press,1966:123
[2] Nardone V C,Prewo K M.Scr Metall,1986; 20:43
[3] Clyne T W.Mater Sci Eng,1989; A122:183
[4] Jiang Z,Lian J,Yang D,Dong S.J Mater Sci Tech,1998;14:516
[5] Karbhari V M,Wilkins D J.Scr Metall,1991; 25:707
[6] Jiang Z,Lian J,Yang D,Dong S.Mater Sci Eng,1998; A248:256
[7] Withers P J,Stobbs W M,Pedersen O P.Acta Metall,1989;37:3061
[8] Tanaka T,Wakashima K,Mori T.J Mech Phys Solids,1973;21:207
[9] Arsenault R J,Taya M.Acta Metall,1987; 35:651
[10] Levy L,Papazian J M.Metall Trans,1990; A21:411
[11] Christman T,Needleman A,Suresh S.Acta Metall Mater,1989; 37:3209
[12] Povirk G L,Needleman A,Nutt S.Mater Sci Eng,1990;A125:129
[13] Dutta I,Sims J D,Seigenthaler D M.Acta Metall Mater,1993; 41:885
[14] Shen Y L,Finot M,Needleman A,Suresh S.Acta Metall Mater,1994; 42:77
[15] Li Z,Schmauder S,Wanner A,Dong M.Scr Metall Mater,1995; 33:1289
[16] Jain M,MacEwen S R,Wu L.Mater Sci Eng,1994; A183:111
[17] Pillinger P,Hartley C,Sturgess E N,Rowe G W.Int J Mech Sci,1986; 28:23
[18] Cook R D.IJNME,1977; 11:1334
[19] Garwal B D,Bansal R K.Fibre Sci Technol,1979; 12:149
[20] Hu P,Li Y X,Liu Y Q.Numerical Elasto-Plastic Mechanics.Changchun:Jilin Science and Technology Press,1995:163(胡平,李运兴,柳玉启.数值弹塑性力学.长春:吉林科学技术出版社出版,1995:163)
[21] Sun X K,Zhou B L,Wang G D.Acta Metall Sin,1998; (2):211(孙雪坤,周本濂,王国栋金属学报,1998;(2):211)
[22] Christman T,Needleman A,Nutt S,Suresh S.Mater Sci Eng,1989; A107:49
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%