运用空间轴对称弹塑性有限元方法,研究了短纤维增强金属基复合材料拉伸应力场分布.研究表明,基体和纤维的应力分布及基体塑性行为具有明显的不均匀性,材料参数(纤维长径比、纤维体积分数、纤维根间距和基体应变硬化指数)以不同方式通过影响应力传递、基体约束变形和基体应变硬化进而影响应力场分布.
参考文献
[1] | Kelly A.Strong Solids.Oxford:Clarendon Press,1966:123 |
[2] | Nardone V C,Prewo K M.Scr Metall,1986; 20:43 |
[3] | Clyne T W.Mater Sci Eng,1989; A122:183 |
[4] | Jiang Z,Lian J,Yang D,Dong S.J Mater Sci Tech,1998;14:516 |
[5] | Karbhari V M,Wilkins D J.Scr Metall,1991; 25:707 |
[6] | Jiang Z,Lian J,Yang D,Dong S.Mater Sci Eng,1998; A248:256 |
[7] | Withers P J,Stobbs W M,Pedersen O P.Acta Metall,1989;37:3061 |
[8] | Tanaka T,Wakashima K,Mori T.J Mech Phys Solids,1973;21:207 |
[9] | Arsenault R J,Taya M.Acta Metall,1987; 35:651 |
[10] | Levy L,Papazian J M.Metall Trans,1990; A21:411 |
[11] | Christman T,Needleman A,Suresh S.Acta Metall Mater,1989; 37:3209 |
[12] | Povirk G L,Needleman A,Nutt S.Mater Sci Eng,1990;A125:129 |
[13] | Dutta I,Sims J D,Seigenthaler D M.Acta Metall Mater,1993; 41:885 |
[14] | Shen Y L,Finot M,Needleman A,Suresh S.Acta Metall Mater,1994; 42:77 |
[15] | Li Z,Schmauder S,Wanner A,Dong M.Scr Metall Mater,1995; 33:1289 |
[16] | Jain M,MacEwen S R,Wu L.Mater Sci Eng,1994; A183:111 |
[17] | Pillinger P,Hartley C,Sturgess E N,Rowe G W.Int J Mech Sci,1986; 28:23 |
[18] | Cook R D.IJNME,1977; 11:1334 |
[19] | Garwal B D,Bansal R K.Fibre Sci Technol,1979; 12:149 |
[20] | Hu P,Li Y X,Liu Y Q.Numerical Elasto-Plastic Mechanics.Changchun:Jilin Science and Technology Press,1995:163(胡平,李运兴,柳玉启.数值弹塑性力学.长春:吉林科学技术出版社出版,1995:163) |
[21] | Sun X K,Zhou B L,Wang G D.Acta Metall Sin,1998; (2):211(孙雪坤,周本濂,王国栋金属学报,1998;(2):211) |
[22] | Christman T,Needleman A,Nutt S,Suresh S.Mater Sci Eng,1989; A107:49 |
上一张
下一张
上一张
下一张
计量
- 下载量()
- 访问量()
文章评分
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%