欢迎登录材料期刊网

材料期刊网

高级检索

激光等离子体冲击波应用技术以其节能、高效、可控性强等优点,受到了众多研究者的广泛关注. 综述了激光等离子体冲击波作用效应,分析了靶表面等离子体和激光维持的爆轰波对靶冲量传递的影响,重点介绍了利用激光等离子体冲击波效应的两项技术——激光冲击强化技术和激光推进技术. 通过对比国内外技术的优势,系统考察了激光冲击强化技术和激光推进技术的原理和应用研究现状,并分析了未来应用研究的趋势. 移动式短脉冲大能量激光器的研制将是未来的一个重要研究方向,需从理论和试验两个方面研究激光参数、环境参数和靶材参量对激光与靶相互作用产生的激光等离子体冲击波效应和声波效应的影响,探索激光等离子体声波和激光等离子体冲击波力学效应的关系. 大能量激光器的体积大,环境要求高,稳定性差,要想真正把激光等离子体冲击波效应应用于实际,就需要开发稳定性好的短脉冲、大能量移动式激光器,提高激光等离子体冲击波效应应用系统的机动性、方便性和可靠性.

More and more researchers have shown great interest in laser plasma shock wave application technology for its ad-vantages such as energy-saving, efficient and controllable. Laser plasma shock wave effects were reviewed, and the effects of the target surface plasma and laser sustaining detonation on target impulse transfer were analyzed. The two technologies using laser plasma shock wave were discussed in detail, namely, laser peening technology and laser propulsion technology. By comparing the advantages of domestic and foreign technologies, the principle and application status of laser peening technology and laser propul-sion technology were systematically investigated, and the trend of application research development of laser plasma shock wave effects was also analyzed. The mobile short-pulse high-energy laser will be an important research direction in the future. The effectsof laser parameters, environment parameters and target material parameters on the laser plasma shock wave effects and acoustic effects generated by the interactions between laser and the target should be studied from the aspects of theory and experiment. And the relationship between laser plasma acoustic effects and laser plasma shock wave mechanical effects was explored. High-energy lasers have large volume, high environment requirements and low stability. In order to apply laser plasma shock wave effects in practice, short-pulse high-energy mobile lasers should be developed, to improve the mobility, convenience and reliability of laser plasma shock wave effects application systems.

参考文献

[1] Wang, J. T.;Zhang, Y. K.;Chen, J. F.;Zhou, J. Y.;Ge, M. Z.;Lu, Y. L.;Li, X. L..Effects of laser shock peening on stress corrosion behavior of 7075 aluminum alloy laser welded joints[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:7-14.
[2] Patrick J. Golden;Alisha Hutson;Vasan Sundaram.Effect of surface treatments on fretting fatigue of Ti-6Al-4V[J].International Journal of Fatigue,20077(7):1302-1310.
[3] Y.K. Zhang;J.Z. Lu;X.D. Ren;H.B. Yao;H.X. Yao.Effect Of Laser Shock Processing On The Mechanical Properties And Fatigue Lives Of The Turbojet Engine Blades Manufactured By Ly2 Aluminum Alloy[J].Materials & design,20095(5):1697-1703.
[4] Kan Ding;Lin Ye.Simulation of multiple laser shock peening of a 35CD4 steel alloy[J].Journal of Materials Processing Technology,20061/3(1/3):162-169.
[5] 花银群;张永康;杨继昌;陈瑞芳;叶云霞.激光冲击强化技术中自由约束层理论厚度的研究[J].中国激光,2002(8):751-754.
[6] 张凌峰;张永康;冯爱新;张雷洪.激光冲击用柔性贴膜的研究[J].激光技术,2007(1):65-67.
[7] 张永康;陈菊芳;许仁军.AM50镁合金激光冲击强化实验研究[J].中国激光,2008(7):1068-1072.
[8] D.W. See;J.L. Dulaney;A.H. Clauer.THE AIR FORCE MANUFACTURING TECHNOLOGY LASER PEENING INITIATIVE[J].Surface Engineering,20021(1):32-36.
[9] A. King;A. Steuwer;C. Woodward.Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20060(0):12-18.
[10] Laser Shock Microforming Of Thin Metal Sheets[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,200910(10):p.5633.
[11] 李伟;李应红;何卫锋;李启鹏.激光冲击强化技术的发展和应用[J].激光与光电子学进展,2008(12):15-19.
[12] 任旭东;阮亮;皇甫喁卓;占秋波;杨慧敏;张永康.中高温条件下6061-T651铝合金激光冲击强化研究[J].中国激光,2012(3):108-111.
[13] 张凌峰;熊毅;张毅;刘玉亮.高锰钢在激光冲击作用下的微观特征[J].中国激光,2011(6):226-229.
[14] Dong Lin;Martin Yi Zhang;Chang Ye;Zhikun Liu;C. Richard Liu;Gary J. Cheng.Large scale, highly dense nanoholes on metal surfaces by underwater laser assisted hydrogen etching near nanocrystalline boundary[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201210(10):4254-4259.
[15] H. Amar;V. Vignal;H. Krawiec;C. Josse;P. Peyre;S.N. da Silva;L.F. Dick.Influence of the microstructure and laser shock processing (LSP) on the corrosion behaviour of the AA2050-T8 aluminium alloy[J].Corrosion Science: The Journal on Environmental Degradation of Materials and its Control,201110(10):3215-3221.
[16] Kai-yu Luo;Jin-zhong Lu;Ling-feng Zhang;Jun-wei Zhong;Hai-bing Guan;Xiao-ming Qian.The microstructural mechanism for mechanical property of LY2 aluminum alloy after laser shock processing[J].Materials & design,20105(5):2599.
[17] Babu NK;Raman SGS;Murthy CVS;Reddy GM.Effect of beam oscillation on fatigue life of Ti-6Al-4V electron beam weldments[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20071-2(1-2):113-119.
[18] Couturier S.;Hallouin M.;Romain JP.;Bauer F.;Deresseguier T..SHOCK PROFILE INDUCED BY SHORT LASER PULSES[J].Journal of Applied Physics,199612(12):9338-9342.
[19] Elsayed-Ali, HE;Rigsbee, JM;Banas, G;Chu, JP.Laser-shock processing effects on surface microstructure and mechanical properties of low carbon steel[J].Materials Science & Engineering. A, Structural Materials: Properties, Microstructure and Processing,19991-2(1-2):260-268.
[20] Luo, K.Y.;Lu, J.Z.;Zhang, Y.K.;Zhou, J.Z.;Zhang, L.F.;Dai, F.Z.;Zhang, L.;Zhong, J.W.;Cui, C.Y..Effects of laser shock processing on mechanical properties and micro-structure of ANSI 304 austenitic stainless steel[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201113/14(13/14):4783-4788.
[21] Thorslund T.;Kahlen FJ.;Kar A..Temperatures, pressures and stresses during laser shock processing[J].Optics and Lasers in Engineering,20031(1):51-71.
[22] Charles S. Montross;Tao Wei;Lin Ye.Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J].International Journal of Fatigue,200210(10):1021-1036.
[23] 聂贵锋;冯爱新;任旭东;曹宇鹏;周鹏程;李彬.激光冲击参数对2024铝合金冲击区域的主应力及其方向的影响[J].中国激光,2012(1):86-91.
[24] 罗新民;苑春智;张静文;马辉;赵广志;杨坤;张永康.激光冲击及其对金属材料组织和性能的影响[J].热处理,2012(1):17-22.
[25] Wenyue Zhao;Yuzhuo Liu;Lei Liu;Youxing Yu;Yue Ma;Shengkai Gong.Surface recrystallization of a gamma-TiAl alloy induced by shot peening and subsequent annealing treatments[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,2013Apr.1(Apr.1):690-696.
[26] 周建忠;徐增闯;黄舒;杨小东;王呈栋;杨晶;左立党;季杏露.基于不同应力比下激光喷丸强化6061-T6铝合金的疲劳裂纹扩展性能研究[J].中国激光,2011(9):73-78.
[27] 静永娟;王新英;张继.喷丸处理对TiAl合金拉伸性能的影响[J].稀有金属,2009(5):750-753.
[28] 张楠;徐智君;朱晓农;许宽宏;杨建军;吴泽华;梁艳梅;王明伟.激光推进技术[J].红外与激光工程,2011(6):1025-1037.
[29] Hao Chen;Lei Shi;Lihua Ma;Yongan Chen.Numerical simulation of air-breathing nanosecond laser propulsion considering subsonic inflow and multi-pulse[J].Optik: Zeitschrift fur Licht- und Elektronenoptik: = Journal for Light-and Electronoptic,201414(14):3444-3448.
[30] L Felicetti;F. Santoni.Nanosatellite swarm missions in low Earth orbit using laser propulsion[J].Aerospace science and technology,20131(1):179-187.
[31] 程建中;蔡建;胡云;张增明;丁泽军.掺杂金属颗粒的高分子工质激光推进实验研究[J].强激光与粒子束,2008(7):1190-1194.
[32] B.Rouleau;P. Peyre;J.Breuils;H.Pelletier;T.Baudin;F.Brisset.Characterization at a local scale of a laser-shock peened aluminum alloy surface[J].Applied Surface Science: A Journal Devoted to the Properties of Interfaces in Relation to the Synthesis and Behaviour of Materials,201116(16):7195-7203.
[33] Amrinder Gill;Abhishek Telang;S.R. Mannava;Dong Qian;Young-Shik Pyoun;Hitoshi Soyama;Vijay K. Vasudevan.Comparison of mechanisms of advanced mechanical surface treatments in nickel-based superalloy[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:346-355.
[34] Gao, Y.K..Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201110/11(10/11):3823-3828.
[35] S.Z. Zhang;F.T. Kong;Y.Y. Chen.Phase transformation and microstructure evolution of differently processed Ti-45Al-9Nb-Y alloy[J].Intermetallics,2012:208-216.
[36] Tetsui T..Development of a TiAl turbocharger for passenger vehicles[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20020(0):582-588.
[37] Appel F.;Wagner R..Microstructure and deformation of two-phase gamma-titanium aluminides [Review][J].Materials Science & Engineering, R. Reports: A Review Journal,19985(5):187-268.
[38] Marketz WT.;Fischer FD.;Clemens H..Deformation mechanisms in TiAl intermetallics - experiments and modeling[J].International Journal of Plasticity,20033(3):281-321.
[39] Seong-Woong Kim;Young-Sang Na;Jong-Taek Yeom;Seung Eon Kim;Yoon Suk Choi.An in-situ transmission electron microscopy study on room temperature ductility of TiAl alloys with fully lamellar microstructure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:140-145.
[40] Fallahi, A.;Ataee, A..Effects of crystal orientation on stress distribution near the triple junction in a tricrystal γ-TiAl[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201018/19(18/19):4576-4581.
[41] S. A. MALOY;G. T. GRAY III.HIGH STRAIN RATE DEFORMATION OF Ti-48Al-2Nb-2Cr[J].Acta materialia,19965(5):1741-1756.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%