欢迎登录材料期刊网

材料期刊网

高级检索

以乙二醇辅助水热法制备了Dy3+,Cr3+共掺杂ZnGa2O4的小尺寸、近红外长余辉纳米粒子(PLNPs).通过优化反应条件、锌的比例和共掺杂稀土离子Dy3+等措施,不仅提高了PLNPs的余辉发光性能,而且有效控制了PLNPs的粒径.结果表明,当起始溶液pH为7、Ga:Zn的比例为2:1.2、Dy3+的掺杂量为1%时,所合成的PLNPs的尺寸在6 nm左右,而且具有良好的余辉发光性能,其近红外余辉时间大于72 h,在高信噪比生物医学成像中具有潜在应用价值.

参考文献

[1] le-Masne-de-Chermont Q;Chaneac C;Seguin J;Pelle F;Maitrejean S;Jolivet JP;Gourier D;Bessodes M;Scherman D.Nanoprobes with near-infrared persistent luminescence for in vivo imaging.[J].Proceedings of the National Academy of Sciences of the United States of America,200722(22):9266-9271.
[2] Jean-Claude G. Bunzli;Svetlana V. Eliseeva.Intriguing aspects of lanthanide luminescence[J].Chemical science,20135(5):1939-1949.
[3] Yao, C.;Tong, Y..Lanthanide ion-based luminescent nanomaterials for bioimaging[J].TrAC: Trends in Analytical Chemistry,2012:60-71.
[4] P. Dhak;U. K. Gayen;S. Mishra;P. Pramanik;A. Roy.Optical emission spectra of chromium doped nanocrystalline zinc gallate[J].Journal of Applied Physics,20096(6):063721-1-063721-6.
[5] Weissleder,R.A clearer vision for in vivo imaging.[J].Nature biotechnology,20014(4):316-317.
[6] Weidong Shi;Shuyan Song;Hongjie Zhang.Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J].Chemical Society Reviews,201313(13):5714-5743.
[7] Thomas Maldiney;Aurelie Bessiere;Johanne Seguin.The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J].Nature materials,20144(4):418-426.
[8] Srivastava, Bhupendra B.;Kuang, Anxiu;Mao, Yuanbing.Persistent luminescent sub-10 nm Cr doped ZnGa2O4 nanoparticles by a biphasic synthesis route[J].Chemical communications,201534(34):7372-7375.
[9] Teston, Eliott;Richard, Sophie;Maldiney, Thomas;Lievre, Nicole;Wang, Guillaume Yangshu;Motte, Laurence;Richard, Cyrille;Lalatonne, Yoann.Non-Aqueous Sol-Gel Synthesis of Ultra Small Persistent Luminescence Nanoparticles for Near-Infrared In Vivo Imaging[J].Chemistry: A European journal,201520(20):7350-7354.
[10] Maldiney, T.;Lecointre, A.;Viana, B.;Bessière, A.;Bessodes, M.;Gourier, D.;Richard, C.;Scherman, D..Controlling electron trap depth to enhance optical properties of persistent luminescence nanoparticles for in vivo imaging[J].Journal of the American Chemical Society,201130(30):11810-11815.
[11] Mathieu Allix;Sebastien Chenu;Emmanuel Veron.Considerable Improvement of Long-Persistent Luminescence in Germanium and Tin Substituted ZnGa2O4[J].Chemistry of Materials: A Publication of the American Chemistry Society,20139(9):1600-1606.
[12] Zhengwei Pan;Yi-Ying Lu;Feng Liu.Sunlight-activated long-persistent luminescence in the near-infrared from Cr~(3+)-doped zinc gallogermanates[J].Nature materials,20121(1):58-63.
[13] Abdukayum, A.;Chen, J.-T.;Zhao, Q.;Yan, X.-P..Functional near infrared-emitting Cr~(3+)/Pr~(3+) Co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J].Journal of the American Chemical Society,201338(38):14125-14133.
[14] Maldiney, T.;Richard, C.;Seguin, J.;Wattier, N.;Bessodes, M.;Scherman, D..Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice[J].ACS nano,20112(2):854-862.
[15] Abdukader Abdukayum;Cheng-Xiong Yang;Qiang Zhao;Jia-Tong Chen;Lu-Xi Dong;Xiu-Ping Yan.Gadolinium Complexes Functionalized Persistent Luminescent Nanoparticles as a Multimodal Probe for Near-Infrared Luminescence and Magnetic Resonance Imaging in Vivo[J].Analytical chemistry,20149(9):4096-4101.
[16] Xiaomin Li;Fan Zhang;Dongyuan Zhao.Highly efficient lanthanide upconverting nanomaterials: Progresses and challenges[J].Nano Today,20136(6):643-676.
[17] Hao Dong;Ling-Dong Sun;Chun-Hua Yan.Basic understanding of the lanthanide related upconversion emissions[J].Nanoscale,201313(13):5703-5714.
[18] Kim JS.;Park HL.;Kim GC.;Kim TW.;Hwang YH.;Kim HK.;Mho SI.;Han SD..Luminescence enhancement of ZnGa2O4 : Mn2+ by Ge4+ and Li+ doping[J].Solid State Communications,20039(9):515-518.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%