以原位缩聚法制备的中间相炭微球/碳纳米管(MCMB/CNTs)复合微球为原料,通过添加氧化硼(B2O3)粉体和磷酸浸渍对该复合材料进行了基体和表面改性。采用扫描电子显微镜(SEM)、三点弯曲法、热重分析(TG)以及恒温氧化测试方法对复合材料的表面形貌、弯曲强度以及抗氧化性能进行了表征与测试。结果表明:添加适量的B2O3可以有效提升复合材料的抗氧化性能和弯曲强度, B2O3含量超过2%时,复合材料的弯曲强度逐渐下降。将含有2% B2O3的复合材料试样进行磷酸浸渍处理后,试样的弯曲强度可达66 MPa,初始氧化温度520℃,经过500℃恒温氧化60 min后其氧化失重率仅为5%,弯曲强度仍达到50.3 MPa。
Mesocarbon microbead/carbon nanotubes (MCMB/CNTs) composites were modified by adding B2O3 powders and phosphate impregnation and the MCMB/CNTs were prepared usingin-situthermal polymerization. The morphology, flexural strength and oxidation resistance behavior were studied using scanning electron micro-scope (SEM), three-point bending tests, thermo gravimetric analysis (TG) and isothermal oxidation method. The results show that the oxidation resistance and flexural strength of the composites are enhanced with proper amount of B2O3. When the ratio of B2O3is beyond 2%, the flexural strength of the sample begins to decrease. The sample with 2% B2O3 impegnated with phosphate reachs the highest flexural strength of 66 MPa, and the initial mass loss temperature of the samples is 520℃. After isothermal oxidation at 500℃ for 60 min, the mass loss and the flexural strength of the sample are 5% and 50.3 MPa, respectively.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%