本研究探索具有良好力学性能的纳米晶体纤维素(NCC)对磷酸钙骨水泥(CPC)抗压强度的影响。采用万能力学试验机、Gilmore双针、X射线衍射仪(XRD)和X射线光电子能谱仪(XPS)表征含不同NCC的CPC理化性能;利用扫描电子显微镜(SEM)和荧光显微镜观察CPC断面形貌和荧光标记的NCC在CPC中的分散。抗压强度结果表明: NCC能显著提高CPC的抗压强度,且2% NCC-CPC的抗压强度最高,约为27 MPa; CPC的凝固时间随NCC含量的增加而延长,含量为2%时基本符合临床要求; XRD和XPS结果显示NCC与Ca2+形成不稳定的配合物,促进了CPC中二水磷酸氢钙(DCPD)和CaCO3的溶解和转化; SEM观察结果显示加入NCC使CPC内部结构更致密,孔隙和裂纹减少;荧光显微观察结果表明NCC在CPC中均匀分散。
The aim of this study is to investigate the effect of nanocrystalline cellulose (NCC) with favorable mechanical properties on the compressive strength of calcium phosphate cement (CPC). Compressive test, Gil-more needle test, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to analyze the physicochemical properties of CPC influenced by different contents of NCC. Scanning electron microscope (SEM) and fluorescence microscope were used to observe the morphologies of CPC and the dispersity of labeled-NCC in CPC, respectively. NCC significantly increased the compressive strength of CPC up to about 27 MPa when the content of NCC was 2%. Setting times of CPC were prolonged with increased NCC, but still met the clinical re-quirements when the content of NCC was not more than 2%. XRD and XPS indicated that the combination of NCC with Ca2+ could form unstable coordination compound and NCC promoted the dissolution and conversion of dicalcium phosphate dehydrate (DCPD) and CaCO3. SEM showed that CPC became denser with fewer pores and cracks by addition of NCC. Fluorescence microscope demonstrated the homogeneous dispersion of la-beled-NCC in CPC.
参考文献
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%