欢迎登录材料期刊网

材料期刊网

高级检索

玻璃纤维增强树脂(GFRP)-混凝土组合梁由上部混凝土板和下部 GFRP型材以及连接二者的抗剪连接件组成。开展了2根 GFRP-混凝土组合梁(非预应力及施加体外预应力组合梁各1根)在1年持续载荷下行为的试验研究。考虑混凝土收缩徐变及 GFRP型材蠕变耦合的影响,开展了50年的24根 GFRP-混凝土组合梁时随有限元参数分析。结果表明:在1年持续载荷下,非预应力与施加体外预应力组合梁长期挠度分别为其初始挠度的1.42倍及2.91倍;非预应力与预应力组合梁中连接件的长期滑移分别为0.230 mm及0.164 mm,相比初始滑移2种组合梁的最终滑移分别增加了53.3%和58.2%;50年后,非预应力组合梁长期挠度与初始挠度的比值在1.50~1.56之间;而施加体外预应力组合梁长期挠度与初始挠度的比值在3.03~6.08之间。基于以上研究提出了 GFRP-混凝土组合梁长期挠度的计算建议。

The glass fiber reinforced plastic (GFRP)-concrete composite beam consists of a concrete slab on the upper side,a GFRP profile on the lower side and shear connectors to connect these two sides.A test study was con-ducted on the behaviors of two GFRP-concrete composite beams (non-prestressed and external prestressed composite beams each had one)under sustained load for one year.A time-dependent finite element parametric analysis of 24 GFRP-concrete composite beams,taking coupling effect of the shrinkage and creep of concrete and creep of GFRP profile into account,was carried out for 50 years.The results show that long-term deflections of the non-prestressed and external prestressed composite beams are 1.42 and 2.91 times of their respective instantaneous deflections under sustained load for one year.The long-term slips of the non-prestressed and external prestressed composite beams are 0.230 mm and 0.164 mm,respectively.Compared with initial slips,the terminal slips of the two composite beams increase by 53.3% and 58.2%,respectively.The ratios of long-term deflection to the instantaneous deflection for the non-prestressed composite beam are between 1.50-1.56 while the ratios of the long-term deflection to the instan-taneous deflection for the external prestressed composite beam are between 3.03-6.08.Based on the above resear-ches,calculation proposals of long-term deflections of GFRP-concrete composite beams were proposed.

参考文献

[1] 叶列平;冯鹏.FRP在工程结构中的应用与发展[J].土木工程学报,2006(3):24-36.
[2] Jan Knippers;Eberhard Pelke;Markus Gabler;Dieter Berger.Bridges with Glass Fibre-Reinforced Polymer Decks: The Road Bridge in Friedberg, Germany[J].Structural engineering international,20104(4):400-404.
[3] Lee Canning;John Hodgson;Raj Karuna;Sam Luke;Peter Brown.Progress of advanced composites for civil infrastructure[J].Proceedings of the Institution of Civil Engineers. Structures and buildings,2007sb6(sb6):307-315.
[4] Mario F. Sa;Augusto M. Gomes;Joao R. Correia;Nuno Silvestre.Creep behavior of pultruded GFRP elements - Part 1: Literature review and experimental study[J].Composite structures,201110(10):2450-2459.
[5] Jose A. Gonilha;Joao R. Correia;Fernando A. Branco.Creep response of GFRP-concrete hybrid structures: Application to a footbridge prototype[J].Composites, Part B. Engineering,2013Oct.(Oct.):193-206.
[6] Joao Ramoa Correia;Fernando A. Branco;Joao Ferreira.GFRP-concrete hybrid cross-sections for floors of buildings[J].Engineering Structures,20096(6):1331-1343.
[7] Jose A. Gonilha;Joao R. Correia;Fernando A. Branco.Structural behaviour of a GFRP-concrete hybrid footbridge prototype: Experimental tests and numerical and analytical simulations[J].Engineering structures,2014Feb.(Feb.):11-22.
[8] Joao R. Correia;Fernando A. Branco;Joao G. Ferreira.Flexural behaviour of multi-span GFRP-concrete hybrid beams[J].Engineering structures,20097(7):1477-1485.
[9] Pedro J.D. Mendes;Joaquim A.O. Barros;Jose M. Sena-Cruz;Mahsa Taheri.Development of a pedestrian bridge with GFRP profiles and fiber reinforced self-compacting concrete deck[J].Composite structures,201111(11):2969-2982.
[10] Mario F. Sa;Augusto M. Gomes;Joao R. Correia;Nuno Silvestre.Creep behavior of pultruded GFRP elements - Part 2: Analytical study[J].Composite structures,20119(9):2409-2418.
[11] N.J. Gardner;M.J. Lockman.Design Provisions for Drying Shrinkage an Creep of Normal-Strength Concrete[J].ACI materials journal,20012(2):159-167.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%