采用阳离子聚电解质聚二烯丙基二甲基氯化铵(PDDA)改性 SiO2,再通过静电自组装制备了 SiO2-PD-DA-氧化石墨烯(GO)核-壳杂化粒子。采用溶液共混法将 SiO2-PDDA-GO引入到高温硫化硅橡胶(SR)中,制备了SiO2-PDDA-GO/SR介电弹性体复合材料。结果表明:该方法能实现 GO 在 SiO2表面大面积的包覆,解决了 GO容易自聚集的问题,且PDDA具有还原 GO的作用,无需再对 GO核-壳杂化粒子/SR复合材料进行原位热还原,简化了实验方案,节能环保。SiO2-PDDA-GO填充量为60wt%时,在100 Hz 频率下,SiO2-PDDA-GO/SR 介电弹性体复合材料的介电常数为21.53,是 SR的11.6倍,介电损耗保持较低值,同时,复合材料的模量保持在较低水平。在电场强度为2.48 kV/mm时,60wt%的SiO2-PDDA-GO/SR介电弹性体复合材料横向电致形变在同一电场强度下与 SR相比增加了15倍。
Cationic polyelectrolyte poly(diallyldimethylammonium chloride)(PDDA)was used to modify SiO2 ,and SiO2-PDDA-graphite oxide (GO)core-shell hybrid particles were prepared by electrostatic self-assembly.By intro-ducing SiO2-PDDA-GO into high-temperature vulcanization silicone rubber (SR)with solution blending method, SiO2-PDDA-GO/SR dielectric elastomer composites were prepared.Results show that this method can realize GO large surface coating on surface of SiO2 to prevent GO from self-agglomerating.GO core-shell hybrid particles/SR composites were obtained without in-situ thermal reduction because PDDA can reduce GO,made experimental scheme simple and environmental protection.The dielectric constant of SiO2-PDDA-GO/SR dielectric composite at 100 Hz increases to 21.53 with 60wt% SiO2-PDDA-GO which is 11.6 times than SR,and dielectric loss remains at low level.Meanwhile,modulus of composites remains low level.The lateral actuation strain of SiO2-PDDA-GO/SR dielectric elastomer composites with 60wt% SiO2-PDDA-GO at 2.48 kV/mm compared with pure SR increases 15 fold under same electric field intensity.
参考文献
[1] | Li Chen;Songgang Chai;Kai Liu.Enhanced Epoxy/Silica Composites Mechanical Properties by Introducing Graphene Oxide to the Interface[J].ACS applied materials & interfaces,20128(8):4398-4404. |
[2] | Chun Xian Guo;Chang Ming Li.A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance[J].Energy & environmental science: EES,201111(11):4504-4507. |
[3] | Wei Fan;Chao Zhang;Weng Weei Tjiu;Tianxi Liu.Fabrication of electrically conductive graphene/polystyrene composites via a combination of latex and layer-by-layer assembly approaches[J].Journal of Materials Research,20134(4):611-619. |
[4] | Xiaochen Dong;Guichuan Xing;M.B. Chan-Park.The formation of a carbon nanotube-graphene oxide core-shell structure and its possible applications[J].Carbon: An International Journal Sponsored by the American Carbon Society,201115(15):5071-5078. |
[5] | Joonsuk Oh;Jun-Ho Lee;Ja Choon Koo.Graphene oxide porous paper from amine-functionalized poly(glycidyl methacrylate)/graphene oxide core-shell microspheres[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,201041(41):9200-9204. |
[6] | Shupeng Zhang;Pan Xiong;Xujie Yang.Novel PEG functionalized graphene nanosheets: enhancement of dispersibility and thermal stability[J].Nanoscale,20115(5):2169-2174. |
[7] | Sandip Niyogi;Elena Bekyarova;Mikhail E.Itkis;Jared L.McWilliams;Mark A.Hamon.Solution Properties of Graphite and Graphene[J].Journal of the American Chemical Society,200624(24):7720-7721. |
[8] | Huafeng Yang;Changsheng Shan;Fenghua Li;Dongxue Han;Qixian Zhang;Li Niu.Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquidt[J].Chemical communications,200926(26):3880-3882. |
[9] | Sasha Stankovich;Richard D.Piner;Xinqi Chen;Nianqiang Wu;SonBinh T.Nguyen;Rodney S.Ruoff.Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J].Journal of Materials Chemistry: An Interdisciplinary Journal dealing with Synthesis, Structures, Properties and Applications of Materials, Particulary Those Associated with Advanced Technology,20062(2):155-158. |
[10] | Sasha Stankovich;Richard D. Finer;SonBinh T. Nguyen.Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J].Carbon: An International Journal Sponsored by the American Carbon Society,200615(15):3342-3347. |
[11] | Zhang, S.;Shao, Y.;Liao, H.;Engelhard, M.H.;Yin, G.;Lin, Y..Polyelectrolyte-induced reduction of exfoliated graphite oxide: A facile route to synthesis of soluble graphene nanosheets[J].ACS nano,20113(3):1785-1791. |
[12] | Songfeng Pei;Jinping Zhao;Jinhong Du.Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J].Carbon: An International Journal Sponsored by the American Carbon Society,201015(15):4466-4474. |
[13] | Wang GX;Yang J;Park J;Gou XL;Wang B;Liu H;Yao J.Facile synthesis and characterization of graphene nanosheets[J].The journal of physical chemistry, C. Nanomaterials and interfaces,200822(22):8192-8195. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%