欢迎登录材料期刊网

材料期刊网

高级检索

综述了非连续增强金属基复合材料剧烈塑性变形(SPD)行为的研究进展,系统阐述了等径弯曲通道变形(ECAP)、高压扭转(HPT)、多向锻造(MF)、累积叠轧(ARB)和循环挤压压缩(CEC)5种SPD的加工原理和方法.集中介绍了这些方法在铝基、镁基、铜基和钛基等金属基复合材料方面应用的研究进展.重点介绍了金属基复合材料SPD的微观组织演化和变形力学行为,详细阐明了金属基复合材料SPD机制以及超细晶形成机理,指出了金属基复合材料在SPD中存在的深层次问题及发展趋势,展望了利用SPD方法制备超细晶非连续增强金属基复合材料的应用前景.

参考文献

[1] Y. Estrin;A. Vinogradov.Extreme grain refinement by severe plastic deformation: A wealth of challenging science[J].Acta materialia,20133(3):782-817.
[2] B. Mani;M.H. Paydar.Application of forward extrusion-equal channel angular pressing (FE-ECAP) in fabrication of aluminum metal matrix composites[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20101/2(1/2):116-121.
[3] 何晓梅;朱晓雅;董洁;刘晓燕.剧烈塑性变形条件下工业纯钛晶粒细化机理研究[J].热加工工艺,2009(22):56-58,63.
[4] Park KT.;Hwang DY.;Lee YK.;Kim YK.;Shin DH..High strain rate superplasticity of submicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):273-281.
[5] Tian, Y.Z.;Wu, S.D.;Zhang, Z.F.;Figueiredo, R.B.;Gao, N.;Langdon, T.G..Comparison of microstructures and mechanical properties of a Cu-Ag alloy processed using different severe plastic deformation modes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201113/14(13/14):4331-4336.
[6] Botta W J.H-sorption properties and structural evolution of Mg processed by severe plastic deformation[J].Journal of Alloys and Compounds,2013580(01):187-191.
[7] Semenova, IP;Salimgareeva, GK;Latysh, VV;Lowe, T;Valiev, RZ.Enhanced fatigue strength of commercially pure Ti processed by severe plastic deformation[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20091/2(1/2):92-95.
[8] Tian, JW;Dai, K;Villegas, JC;Shaw, L;Liaw, PK;Klarstrom, DL;Ortiz, AL.Tensile properties of a nickel-base alloy subjected to surface severe plastic deformation[J].Materials Science and Engineering. A, Structural Materials: Properties, Microstructure and Processing,20081/2(1/2):176-183.
[9] 程永奇;陈振华;夏伟军;张文玉;曹清香.大塑性变形技术的研究与发展现状[J].材料导报,2006(z2):245-248.
[10] 康志新;彭勇辉;赖晓明;李元元;赵海东;张卫文.剧塑性变形制备超细晶/纳米晶结构金属材料的研究现状和应用展望[J].中国有色金属学报,2010(4):587-598.
[11] 吕维洁;郭相龙;王立强;覃继宁;张荻.原位自生非连续增强钛基复合材料的研究进展[J].航空材料学报,2014(4):139-146.
[12] 林文松;李元元.颗粒强化钢铁基复合材料的研究现状与展望[J].粉末冶金工业,2001(5):25-29.
[13] Dammak M;Gaspérini M;Barbier D.Microstructure evolution of iron based metal matrix composites submitted to simple shear[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014616:123-131.
[14] Alizadeh M;Salahinejad E.A comparative study on metal matrix composite fabricated by conventional and cross accumulative roll bonding processes[J].Journal of Alloys and Compounds,2014620(25):180-184.
[15] 王基才;尤显卿;郑玉春;程娟文.颗粒增强金属基复合材料的研究现状及展望[J].硬质合金,2003(1):51-55.
[16] 郭炜;王渠东.大塑性变形制备超细晶复合材料的研究进展[J].锻压技术,2010(1):4-9.
[17] Ruslan Z. Valiev;Terence G. Langdon.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in materials science,20067(7):881-981.
[18] Alexander P. Zhilyaev;Terence G. Langdon.Using high-pressure torsion for metal processing: Fundamentals and applications[J].Progress in materials science,20086(6):1-1.
[19] Chen, Q.;Shu, D.;Hu, C.;Zhao, Z.;Yuan, B..Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:98-104.
[20] M. Reihanian;E. Bagherpour;M.H. Paydar.On the achievement of uniform particle distribution in metal matrix composites fabricated by accumulative roll bonding[J].Materials Letters,2013Jan.15(Jan.15):59-62.
[21] Y. J. Chen;Q. D. Wang;H. J. Roven.Microstructure evolution in magnesium alloy AZ31 during cyclic extrusion compression[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20081/2(1/2):192-200.
[22] V.M. Segal.Engineering and commercialization of equal channel angular extrusion (ECAE)[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20041/2(1/2):269-276.
[23] Stolyarov VV.;Zhu YT.;Alexandrov IV.;Lowe TC.;Valiev RZ..Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):43-50.
[24] Kim I.;Kim J.;Shin DH.;Lee CS.;Hwang SK..Effects of equal channel angular pressing temperature on deformation structures of pure Ti[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):302-310.
[25] Wadsack R;Pippan R;Schedler B.Structural refinements of chromium by severe plastic deformation[J].Fusion Engineering and Design,200366-68:265269.
[26] R. M. Imayev;G. A. Salishchev;O. N. Senkov;V. M. Imayev;M. R. Shagiev;N. K. Gabdullin;A. V. Kuznetsov;F. H. Froes.Low-temperature superplasticity of titanium aluminides[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20011/2(1/2):263-277.
[27] Nobuhiro Tsuji;Katsuhiko Shiotsuki;Yoshihiro Saito.Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding[J].Materials transactions,19998(8):765-771.
[28] Richert J;Richert M.A new method for unlimited deformation of metals and alloys[J].Aluminium,19868:604.
[29] M. Richert;H. P. Stuwe;M. J. Zehetbauer.Work hardening and microstructure of AlMg5 after severe plastic deformation by cyclic extrusion and compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):180-185.
[30] Ramu G;Bauri R.Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-SiCp composite[J].Materials Design,200930(09):3554-3559.
[31] Wang, G.S.;Fan, G.H.;Geng, L.;Hu, W.;Huang, Y.D..Microstructure evolution and mechanical properties of TiB_2/Cu composites processed by equal channel angular pressing at elevated temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:144-149.
[32] Dayan Ma;Jingtao Wang;Kewei Xu.Equal channel angular pressing of a SiC_w reinforced aluminum-based composite[J].Materials Letters,20026(6):999-1002.
[33] WANG Qu-dong;CHEN Yong-jun;ZHANG Lu-jun;LIN Jin-bao;ZHAI Chun-quan.Microstructure and mechanical properties of AZ31-0.5%Si alloy processed by ECAP[J].中国有色金属学会会刊(英文版),2006(z3):1660-1663.
[34] Arab M S;Mahallawy N E;Shehata F.Refining SiCp in reinforced Al-SiC composites using equal-channel angular pressing[J].Materials and Design,201464:280-286.
[35] Islamgaliev R K;Buchgraber W;Kolobov Y R.Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2001319-321:872-876.
[36] SEVERE PLASTIC DEFORMATION PROCESSING AND HIGH STRAIN RATE SUPERPLASTICITY IN AN ALUMINUM MATRIX COMPOSITE[J].Scripta materialia,199910(10):1151-1155.
[37] I. SABIROV;O. KOLEDNIK;R. PIPPAN.Homogenization of Metal Matrix Composites by High-Pressure Torsion Erratum[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,200510(10):2861-2870.
[38] Guo, W.;Wang, Q.;Ye, B.;Li, X.;Liu, X.;Zhou, H..Microstructural refinement and homogenization of Mg-SiC nanocomposites by cyclic extrusion compression[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:267-270.
[39] S.J. Yoo;S.H. Han;W.J. Kim.Magnesium matrix composites fabricated by using accumulative roll bonding of magnesium sheets coated with carbon-nanotube- containing aluminum powders[J].Scripta materialia,20122(2):129-132.
[40] Cheng Lu;Kiet Tieu;David Wexler.Significant enhancement of bond strength in the accumulative roll bonding process using nano-sized SiC particles[J].Journal of Materials Processing Technology,200910(10):4830-4834.
[41] Alizadeh, M.;Paydar, M.H.;Terada, D.;Tsuji, N..Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2012:13-23.
[42] 王开东;常丽丽;王轶农;黄志青.搅拌摩擦加工技术制备Ti颗粒增强AZ31镁基复合材料[J].中国有色金属学报,2009(3):418-423.
[43] Ma Z Y;Liu Z Y;Zhang Q.Fabrication of metal matrix composite via friction stir processing[A].,2013:395-399.
[44] Humphreys F J;Miller W S;Djazeb M R.Microstructural development during thermo-mechanical processing of particulate metal-matrix composites[J].Materials Science and Technology,19906(11):1157-1166.
[45] Jensen D J;Hansen N;Humphreys F J.Effect of metallurgical parameters on the textural development in fcc metals and alloys[A].,1987:431-444.
[46] He C L;Wang J M;Cai Q K.Effects of particle size and volume fraction on extrusion texture of SiCp/Al metal matrix composites[J].Advancde Engineering Materials,2011194-196:1437-1441.
[47] X. Jiang;M. Galano;F. Audebert.Extrusion textures in Al, 6061 alloy and 6061/SiCp nanocomposites[J].Materials Characterization,2014:111-118.
[48] Jamaati, R.;Toroghinejad, M.R.;Hoseini, M.;Szpunar, J.A..Texture development in Al/Al_2O_3 MMCs produced by anodizing and ARB processes[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201110/11(10/11):3573-3580.
[49] B.Q. Han;T.G. Langdon.Achieving enhanced tensile ductility in an Al-6061 composite processed by severe plastic deformation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20050(0):430-434.
[50] Valiev R Z.Paradoxes of severe plastic deformation[J].Advancde Engineering Materials,20035:296-301.
[51] 夏少华 .微米晶/超细晶复合增塑及其机制研究[D].南京理工大学,2010.
[52] C. Schuh;D.C. Dunand.Load transfer during transformation superplasticity of Ti-6Al-4V/TiB whisker-reinforced composites[J].Scripta materialia,20016(6):631-638.
[53] C. Schuh;D.C. Dunand.Transformation Superplasticity of Ti-6Al-4V and Ti-6Al-4V/TiC Composites at High Stresses[J].Materials Science Forum,20010(0):177-182.
[54] H. WATANABE;T. MUKAI;M. MABUCHI.SUPERPLASTIC DEFORMATION MECHANISM IN POWDER METALLURGY MAGNESIUM ALLOYS AND COMPOSITES[J].Acta materialia,200111(11):2027-2037.
[55] Stowell M J;Livesey D W;Ridley N.Cavity coalescence in superplastic deformation[J].ACTA METALLURGICA SINICA,198432(01):3235-3242.
[56] 李锋;林立;童晓旻;刘正;陈立佳.镁合金及其复合材料超塑性的研究现状[J].铸造,2003(7):455-461.
[57] I.V.Alexandrov.Microstructures and Properties of Nanocomposites Obtained through SPTS Consolidation of Powders.[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,19989(9):2253-2260.
[58] 刘崇宇 .累积叠轧焊接法制备铝基复合材料的研究[D].秦皇岛:燕山大学,2013.
[59] 张政 .纳米AlO3p/2024复合材料的制备及其往复镦—挤变形[D].湖南大学,2012.
[60] 郭炜 .反复压缩大塑性变形制备镁基复合材料的组织与性能研究[D].上海交通大学,2013.
[61] Zhang, Y.;Jiang, S.;Hu, L.;Liang, Y..Deformation mechanism of NiTi shape memory alloy subjected to severe plastic deformation at low temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:607-614.
[62] J. Y. HUANG;Y. T. ZHU;H. JIANG.MICROSTRUCTURES AND DISLOCATION CONFIGURATIONS IN NANOSTRUCTURED Cu PROCESSED BY REPETITIVE CORRUGATION AND STRAIGHTENING[J].Acta materialia,20019(9):1497-1505.
[63] 张悦 .典型金属的剧烈塑性变形成组织性能演变[D].南京理工大学,2010.
[64] M. Yu. Gutkin;I. A. Ovid'ko;N. V. Skiba.Crossover from grain boundary sliding to rotational deformation in nanocrystalline materials[J].Acta materialia,200314(14):4059-4071.
[65] 张长江 .(TiB+TiC)/Ti复合材料高温变形行为及组织性能研究[D].哈尔滨工业大学,2013.
[66] 邓坤坤;王翠菊;王晓军.SiCP/AZ91复合材料的显微组织、力学性能及强化机制[J].复合材料学报,2014(2):388-395.
[67] Y. Li;Z. Zhang;R. Vogt.Boundaries and interfaces in ultrafine grain composites[J].Acta materialia,201119(19):7206-7218.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%