欢迎登录材料期刊网

材料期刊网

高级检索

基于弹性作用应力引起的非平衡晶界偏聚理论模型和动力学方程,在Misra和Shinoda的试验结果基础上计算多晶体材料钢的晶界区弹性模量.对郑磊的文章参数选择进行修正并重新计算,求得883 K下2.6Ni-Cr-Mo-V钢的晶界区拉伸弹性模量为3.50 MP a;同时基于非平衡晶界偏聚和贫化的模型,分别计算773 K下某钢晶界区的拉伸和压缩弹性模量,所得结果为1.395和1.076 MPa,与2.6Ni-Cr-Mo-V钢的计算结果在数量级上是一致的,进一步证明非平衡晶界偏聚和贫化的理论模型作为晶界区弹性模量的计算可靠性.

Base on the theory model and kinetic equations of non-equilibrium grain boundary segregation induced by applied elastic stress,the elastic modulus in the region of grain boundary for polycrystalline materials have been calculated from Misra and Shinoda′s test results.The parameters presented by Zheng Lei was modified and recal-culated.The results show that the tensile grain boundary elastic modulus of 2.6Ni-Cr-Mo-V steel is 3.50 MPa at 883 K.According to the same theory,the tensile and compressive elastic modulus in the region of grain boundary for the other steel at 773 K are 1.395,1.076 MPa respectively.The results have better consistency in magnitude as the result of 2.6Ni-Cr-Mo-V steel,further proves the reliability of the theoretical model of grain boundary non-equilibrium segregation and dilution as a method of grain-boundary elastic modulus calculaiton.

参考文献

上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%