欢迎登录材料期刊网

材料期刊网

高级检索

LF炉钢水温度的精准控制有利于缩短钢的冶炼时间,从而节约其生产成本.而获得准确的 LF 炉钢水温度预报是钢水温度控制的先决条件.通过分析 LF炉冶炼过程对钢水温度的影响因素,提出一种适用于 LF炉钢水温度预报同时具有增量学习功能的 AdaBoost.RS集成建模算法.该算法引入松弛变量和遗忘因子2个参数,在提高预测精度的同时,可以克服大噪声数据带来的干扰,同时增量学习可以降低早期生产数据对模型的影响.以福建三钢有限责任公司100 t LF炉为研究对象,采用5个测试函数验证算法的抗噪性能,分别用静态数据和动态数据对钢水出站的终点温度进行预报.实验结果表明,预测的绝对误差小于10℃的样本数量超过了样本总数的90%,算法精度较高,有利于实际生产应用.

The accuracy control of molten steel temperature is benefit to save cost and time during ladle furnace (LF)refining.Thus the prediction of temperature on LF is the precondition for temperature control.A new algo-rithm with AdaBoost.RS function is proposed for LF temperature predition by analyzing the influence factors on molten steel temperature.The slack variable and forgetting factor are introduced to increase the accuracy of the soft sensor model and to fit the noisy industrial data.At the same time,the incremental learning can reduce the impact of historical data on the model.Five testing function are used to test the anti-noise ability of the algorithm. In addition,the dynamic and static data which collected from Fujian Sangang′s 100 t LF are used to predict the temperature of molten steel.The experiments demonstrate that more than ninety percent of the sample data′s ab-solute error is less than 10℃.The algorithm can be used in practical production with the high precision.

参考文献

[1] 肖超平;包燕平;元鹏飞;刘志明;程晓文;丘文生.韶钢120 t LF钢水温度预报模型的开发[J].特殊钢,2011(2):11-14.
[2] 孙学刚.LF炉精炼过程钢水温度预报模型[J].科技视界,2013(30):6-7.
[3] 王子奇 .200吨LF炉精炼过程钢水温度智能预报模型研究与在线控制[D].东北大学,2014.
[4] 李军;贺东风;徐安军;田乃媛.基于GA-PSO-BP神经网络的LF终点温度预测[J].炼钢,2012(3):50-52.
[5] 田慧欣;李坤;孟博.一种用于软测量建模的增量学习集成算法[J].控制与决策,2015(8):1523-1526.
[6] Freund Y.;Schapire RE..A DECISION-THEORETIC GENERALIZATION OF ON-LINE LEARNING AND AN APPLICATION TO BOOSTING[J].Journal of Computer and System Sciences,19971(1):119-139.
[7] D. L. Shrestha;D. P. Solomatine.Experiments with AdaBoost.RT, an Improved Boosting Scheme for Regression[J].Neural computation,20067(7):1678-1710.
[8] 吴家伟;严京旗;方志宏;夏勇.基于Adaboost改进算法的铸坯表面缺陷检测方法[J].钢铁研究学报,2012(9):59-62.
[9] 田慧欣;王安娜.基于增量学习思想的改进 AdaBoost 建模方法[J].控制与决策,2012(9):1433-1436.
[10] 田慧欣 .LF精炼炉钢水温度预报方法研究[D].东北大学,2008.
[11] 刘杰 .LF炉钢水温度控制方法研究[D].东北大学,2012.
[12] Ki Hyun Kim;Bu Gi Kim;Dai Gil Lee.Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB)[J].Composite structures,2014Mar.(Mar.):253-259.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%