欢迎登录材料期刊网

材料期刊网

高级检索

鉴于能源短缺与高安全性要求,钢铁材料的低密度化与高强韧化成为高强钢的研发热点。大量报道证明,铝等元素合金化可以显著降低钢材密度,层状复合组织大幅度提高钢铁材料的韧性。在介绍国内外传统等轴晶粒高强韧钢、层状复合钢铁材料及低密度钢研发结果的基础上,提出了Fe-Al-Mn-C低密度双相钢的低中等合金质量分数(4%~12%)的合金化设计和高温铁素体和奥氏体的几何扁平化组织调控思路,制备出具有铁素体与马氏体相间排列的层片复合双相钢组织结构的高强韧钢研发思路。初步研究结果证明,层片双相钢的组织结构设计是可行的,实现了钢铁材料的高强度化(抗拉强度为1000~1500 MPa)、低密度化(6.5~7.5 g/cm3)和高韧性化(室温V型冲击韧性为200~400 J),突破了传统等轴结构材料的强韧化机制制约,形成了新型层状复合结构强韧化的钢铁材料研发方向。强调未来需要对层片双相钢材料进行深入研究,以实现对化学成分、层片组织结构参数与材料强度、韧性和材料密度关系的定量研究,深入探讨低密度层状双相钢的层状组织调控机制及其强韧化机理,为未来高强韧金属材料研发及应用开辟出创新发展方向。

In view of energy shortage and high safety requirements,steels with low density,high strength and high toughness have become a hot research topic in material science. A large number of reports show that the Al and other ele-ments alloying can significantly reduce the steel density,and the laminated composite structure greatly improves the toughness of the steel. In this study,based on the introduction of high strength and high toughness steel with equiaxed grains,steel with layered composite and low-density steel at home and abroad,the idea of low density low to medium-al-loy design(4%-12%)of Fe-Al-Mn-C dual phase steel and the micro-laminated control by grain shape pancaking of both high temperature delta-ferrite phase and austenite phase during hot rolling process is proposed,which makes it possible to obtain a alternatively arranged micro-laminated composite steel with low density,high strength and high toughness. It is proved that it is feasible to obtain the dual phase steel with low density(6.5-7.5 g/cm3),micro-laminated,high strength(1 000-1 500 MPa)and high toughness(200-400 J),which breaks the limitation of toughening mechanism of conventional steel with equiaxial grain structure and opens a new research and development approach for the high strength and high toughness steel. At the end of this paper,a thorough study on the low density and micro-laminated du-al phase steel is proposed to understand the relationship between chemical composition,parameters of the micro-laminat-ed structure and the properties of strength and toughness,and to explore the strengthening and toughening mechanism of the new designed low density and micro-laminated dual phase steel,which would indeed open an innovative direction for future research and development on the low density,high strength and high toughness steels.

参考文献

[1] 翁宇庆;刘正才.高强度钢的发展创新和产业化[J].新材料产业,2009(10):84-88.
[2] 范长刚;董瀚;雍岐龙;翁宇庆;王毛球;时捷;惠卫军.低合金超高强度钢的研究进展[J].机械工程材料,2006(8):1-4.
[3] 王六定;丁富才;王佰民;朱明;钟英良;梁锦奎.低合金超高强度钢亚结构超细化对韧性的影响[J].金属学报,2009(3):292-296.
[4] 赵振业;李志;刘天琦;朱杰远.探索新强韧化机制开拓超高强度钢新领域[J].中国工程科学,2003(9):39-42,54.
[5] 翁宇庆,董瀚,王毛球.新一代钢铁材料的基础研究进展[C].2009年全国高品质热轧板带材控轧控冷与在线、离线热处理生产技术交流研讨会论文集,2009:12-22.
[6] Young Gun Ko;Dong Hyuk Shin;Kyung-Tae Park.An analysis of the strain hardening behavior of ultra-fine grain pure titanium[J].Scripta materialia,200610(10):1785-1789.
[7] PING LIU;A. H. STIGENBERG;J.-O. NILSSON.QUASICRYSTALLINE AND CRYSTALLINE PRECIPITATION DURING ISOTHERMAL TEMPERING IN A 12Cr-9Ni-4Mo MARAGING STAINLESS STEEL[J].Acta Metallurgica et Materialia,19957(7):2881-2890.
[8] Kimura Y;Inoue T;Yin F;Tsuzaki K.Inverse temperature dependence of toughness in an ultrafine grain-structure steel.[J].Science,20085879(5879):1057-1060.
[9] C.M. Cepeda-Jimenez;J.M. Garcia-Infanta;M. Pozuelo.Impact toughness improvement of high-strength aluminium alloy by intrinsic and extrinsic fracture mechanisms via hot roll bonding[J].Scripta materialia,20094(4):407-410.
[10] Zhu, B.;Liang, W.;Li, X..Interfacial microstructure, bonding strength and fracture of magnesium-aluminum laminated composite plates fabricated by direct hot pressing[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201121(21):6584-6588.
[11] S. Sanchez-Saez;E. Barbero;R. Zaera;C. Navarro.Compression after impact of thin composite laminates[J].Composites science and technology,200513(13):1911-1919.
[12] K. D. Leedy;J. F. Stubbins.Copper alloy-stainless steel bonded laminates for fusion reactor applications: tensile stength and microstructure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20011/2(1/2):10-18.
[13] Elastomer-steel laminate armor[J].Composite structures,20105(5):1059.
[14] Bing Wang;Jian Xiong;Xiaojun Wang;Li Ma;Guo-Qi Zhang;Lin-Zhi Wu;Ji-Cai Feng.Energy absorption efficiency of carbon fiber reinforced polymer laminates under high velocity impact[J].Materials & design,2013Sep.(Sep.):140-148.
[15] Marino Quaresimin;Mauro Ricotta;Livio Martello;Stefano Mian.Energy absorption in composite laminates under impact loading[J].Composites, Part B. Engineering,20131(1):133-140.
[16] F.H.Kavarana;K.S.Ravichandran.NANOSCALE STEEL-BRASS MULTILAYER LAMINATES MADE BY COLD ROLLING: MICROSTRUCTURE AND TENSILE PROPERTIES[J].Scripta materialia,200010(10):947-954.
[17] Junya Inoue;Shoichi Nambu;Yoshitake Ishimoto.Fracture elongation of brittle/ductile multilayered steel composites with a strong interface[J].Scripta materialia,200810(10):1055-1058.
[18] Chung-Ming Liu;Hsin-Chung Cheng;Chih-Yeh Chao.Phase transformation of high temperature on Fe-Al-Mn-Cr-C alloy[J].Journal of Alloys and Compounds,20091(1):52-56.
[19] Kyung-Tae Park.Tensile deformation of low-density Fe-Mn-Al-C austenitic steels at ambient temperature[J].Scripta materialia,20136(6):375-379.
[20] R. G. Baligidad;A. Radhakrishna.Effect of carbon content on elevated temperature stability and tensile properties of Fe-8.5 Al alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20001/2(1/2):143-147.
[21] R. G. Baligidad;A. Radhakrishna.Effect of hot rolling and heat treatment on structure and properties of high carbon Fe-Al alloys[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20011/2(1/2):136-142.
[22] JYH-HONG JAW;WEI-CHUN CHENG;CHAUR-JENG WANG.The Formation- of AlN Crystals in -an Fe-Mn-Al-C Alloy during the Nitriding Process[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20059(9):2289-2296.
[23] Ha, M.C.;Koo, J.-M.;Lee, J.-K.;Hwang, S.W.;Park, K.-T..Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2013:276-283.
[24] J. Herrmann;G. Inden;G. Sauthoff.Deformation behaviour of iron-rich iron-aluminum alloys at low temperatures[J].Acta materialia,200310(10):2847-2857.
[25] I. Gutierrez-Urrutia;D. Raabe.Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel[J].Acta materialia,201216(16):5791-5802.
[26] I. Gutierrez-Urrutia;D. Raabe.Influence of Al content and precipitation state on the mechanical behavior of austenitic high-Mn low-density steels[J].Scripta materialia,20136(6):343-347.
[27] Kim, Sang-Heon;Kim, Hansoo;Kim, Nack J..Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J].Nature,2015Feb.5 TN.7537(Feb.5 TN.7537):77-79.
[28] DONG-WOO SUH;SEONG-JUN PARK;TAE-HO LEE.Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-lnduced-Plasticity Steel[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20102(2):397-408.
[29] DONG WOO SUH;JOO HYUN RYU;MIN SUNG JOO.Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20131(1):286-293.
[30] H.L. Yi;J.H. Ryu;H.K.D.H. Bhadeshia.Low-alloy duplex, directly quenched transformation-induced plasticity steel[J].Scripta materialia,20117(7):604-607.
[31] S.S. Sohn;B.-J. Lee;S. Lee.Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C-3.5 Mn-5.8 Al lightweight steel[J].Acta materialia,201313(13):5050-5066.
[32] S.-J. Park;B. Hwang;K.H. Lee.Microstructure and tensile behavior of duplex low-density steel containing 5 mass% aluminum[J].Scripta materialia,20136(6):365-369.
[33] M.D. Zhang;J. Hu;W.Q. Cao;H. Dong.Microstructure and mechanical properties of high strength and high toughness micro-laminated dual phase steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014:168-175.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%