欢迎登录材料期刊网

材料期刊网

高级检索

针对当前常见的中心加焦装料过程,建立了布料过程中螺旋布料时溜槽内炉料颗粒复合运动的三维数学模型,并建立了炉料颗粒在空区内下落过程数学模型和在炉内堆积所形成料面形状及其径向矿焦比分布数学模型.通过将模型预测料面形状与高炉开炉实测料面形状进行对比,证明了模型的有效性.基于实际高炉参数,计算了13°完全中心加焦和20°小角度中心加焦时炉料落点分布和径向矿焦比分布.结果表明,由于中心加焦过程中部分炉料会分布在中间环带,使得实际中心加焦量减少,两者有效的中心加焦率分别为49.4%和70.4%,且在前者模式下形成了直径约为1.2 m的贯通的中心焦柱区域,而在后者条件下形成中心直径约为2.5 m的较大范围的低矿焦比分布柱状区域.最后,阐述了中心加焦技术原理,指出了当前中心加焦操作方式存在的问题,并探讨了高效布料方式,对指导实际高炉生产操作有着重要意义.

Aiming at the common central coke charging process,the three-dimensional mathematical models for bur-den particles comprehensive motion within rotating chute during the charging process was established,and then the mod-el describing particles falling in the freeboard and the model for stock profile formed by particles accumulation and its ra-dial distribution of ore to coke ratio were developed as well. Through comparing the predicted stock profile by estab-lished model and measured results in blow-in stage,the validity of the model was proved. Based on actual blast furnace parameters,the distribution of burden falling point and radial distribution of ore to coke ration were calculated under 13° central coke charging pattern and 20° central coke charging pattern respectively. The results show that as part of central coke distributed in intermediate zone during charging process,the actual coke quantity in the center decreased,and the effective central coke charging rates were 49.4%and 70.4%,respectively. And under the former charging mode,a con-nected central coke column zone with about 1.2 m diameter has been formed,while wide range of columnar zone with low distribution of ore to coke ratio with about 2.5 m diameter was formed under the latter condition. Finally,the princi-ple of central coke charging was deeply clarified,several problems existing in current central coke charging pattern were pointed out,and efficient burden distribution patterns were discussed with important significance in guiding the actual blast furnace production.

参考文献

[1] 张寿荣;银汉.21世纪炼铁发展趋势及对中国高炉炼铁的挑战[J].中国冶金,2009(9):1-8.
[2] 付卫国;范云东.攀钢无料钟炉顶高炉中心加焦工业试验[J].钢铁钒钛,1998(03):14.
[3] 李志全,魏琼花,郭兰芬,张红闯,王文生,杨春生.邯钢5号高炉中心加焦技术的应用探讨[C].第八届(2011)中国钢铁年会论文集,2011:1-5.
[4] 刘元.本钢新1号高炉采用中心加焦技术生产实践[J].本钢技术,2012(2):4-7,22.
[5] 刘莎莎,周检平,马富涛,吴建.中心加焦技术在首钢迁钢3号高炉上的应用[C].中国计量协会冶金分会2012年会暨全国第十七届自动化应用技术学术交流会论文集,2012:362-364.
[6] 张贺顺;王晓朋;王有良;王刚毅;李宏伟.首钢京唐2号高炉中心加焦冶炼技术特点[J].炼铁,2012(06):7-10.
[7] 王晓朋;王有良;李宏伟.首钢京唐1号高炉取消中心加焦冶炼实践[J].炼铁,2013(2):24-27.
[8] 蔡浩;张磊.酒钢1号高炉取消中心加焦实践[J].炼铁,2014(3):43-46.
[9] 盛亚;陈德权;章铭明.武钢5号高炉取消中心加焦工业试验[J].钢铁研究,2015(2):10-13.
[10] 魏纪东;马金芳;万雷;贾国利;陈先中.沿高炉料面径向的机械摆动雷达料形测量系统[J].钢铁,2015(6):94-100.
[11] 朱清天;程树森.高炉料流轨迹的数学模型[J].北京科技大学学报,2007(9):932-936.
[12] 滕召杰;程树森;杜鹏宇.无钟炉顶溜槽内颗粒的三维运动[J].钢铁,2011(12):15-19.
[13] Zhao-jie Teng;Shu-sen Cheng;Peng-yu Du;Xi-bin Guo.Mathematical model of burden distribution for the bell-less top of a blast furnace[J].矿物冶金与材料学报,2013(07):620-626.
[14] S. Nag;V. M. Koranne.Development of material trajectory simulation model for blast furnace compact bell-less top[J].Ironmaking & Steelmaking: Products and applications,20095(5):371-378.
[15] 彭先龙;任廷志;乔长锁;汪程鹏;于成忠.高炉无钟布料器螺旋布料规律的研究[J].钢铁,2010(3):23-26.
[16] Shinroku MATSUZAKI.Estimation of Stack Profile of Burden at Peripheral Zone of Blast Furnace Top[J].ISIJ International,20035(5):620-629.
[17] 余乐安;方颖.中心加焦技术的理论性研究[J].浙江冶金,2009(1):45-47.
[18] 李传辉,韩克峰,张熙伟,刘东菊.高炉中心加焦技术探讨[C].第八届(2011)中国钢铁年会论文集,2011:1-4.
[19] 潘国友;杨乃伏;顾飞.高炉中心装焦时煤气、炉料流场的有限元法解析[J].钢铁,1999(7):5-11.
[20] 滕召杰;程树森;赵国磊.高炉中心加焦对气流分布及煤气利用的影响[J].钢铁研究学报,2014(12):9-14.
[21] 赵雪飞;车传仁.论高炉中心加焦所用焦炭的选择[J].冶金能源,1995(04):11.
[22] Hiroshi Mio;Masatomo Kadowaki;Shinroku Matsuzaki.Development of particle flow simulator in charging process of blast furnace by discrete element method[J].Minerals Engineering,2012:27-33.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%