超超临界电站能够有效提高化石燃料的利用率,缓解能源危机和环境压力。马氏体型耐热钢因其有良好的热物理性能和廉价的成本而广泛应用于电站锅炉中。650℃及以下的电站锅炉关键材料主要采用马氏体型耐热钢。介绍了世界各主要国家探索开发650℃马氏体耐热钢的主要科技项目,包括欧洲、美国和日本。从合金化角度介绍了马氏体耐热钢中主要元素的作用。介绍了当前研究650℃马氏体耐热钢的主要成果,分析了这些钢种的强化机制。
The ultra-supercritical power plants are accepted for high energy efficiency in the world. The ultra-supercritical technology will release pressure of energy crisis and environment problems. Because of its good thermal properties and cheap cost,martensite heat-resistant steel is widely used in power station boiler. The martensite creep-resistant steels were used as key materials for power plant applications with service temperatures not exceeding 650 ℃. The projects about these kind of materials were recommended in some main countries. The effects of various elements were analyzed based on alloying principle in creep-resistant steels. Some new creep-resistant steels designed for 650℃power plant applica-tions recently were discussed and the strengthening mechanism was analyzed.
参考文献
[1] | IEA发布2013年世界能源展望[EB].http://www.nea.gov.cn/2013-11/15/c_132889941.htm,2013-11-11. |
[2] | 毛健雄,毛健全.当前我国燃煤火电机组降低CO2排放的途径[J].电力建设,2011(11):5-10. |
[3] | Viswanathan R;Coleman K;Rao U.Materials for ultra-super-critical coal-fired power plant boilers[J].International Journal of Pressure Vessels and Piping,2006(83):778. |
[4] | R. Viswanathan;J.F. Henry;J. Tanzosh .U.S. Program on Materials Technology for Ultra-Supercritical Coal Power Plants[J].Journal of Materials Engineering and Performance,2005(3):281-292. |
[5] | 王起江;洪杰;徐松乾 等.超超临界电站锅炉用关键材料[J].北京科技大学学报,2012,34(S1):26. |
[6] | 郭廷杰.日本超临界发电用高铬铁素体系耐热钢的开发和应用[J].世界金属导报,2007-3-13(10) |
[7] | 胡平.超(超)临界火电机组锅炉材料的发展[J].电力建设,2005(06):26-29. |
[8] | Fujita T;Asakura K;Sawada T.Creep rupture strength and microstructure of low C-10Cr-2Mo heat-resisting steels with V and Nb[J].Metallurgical Transactions:A,1981(12):1071. |
[9] | Asakura K;Fujita T;Yamashita K.Effect of chromium on creep rupture strength and microstructure of 10Cr-2Mo-V-Nb heat re-sisting steel[J].The Iron and Steel Institute of Japan,1980(9):1375. |
[10] | Helis L;Toda Y;Hara T.Effect of cobalt on the micro-structure of tempered martensitic 9Cr steel for ultra-supercritical power plants[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2009(510/511):88. |
[11] | Abe F.Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2001(319/320/321):770. |
[12] | Abe F.Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2004(387/388/389):565. |
[13] | Abe F;Taneike M;Sawada K .Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides[J].Pres-sure Vessels and Piping,2007,84:3. |
[14] | Abe F .Analysis of creep rates of tempered martensitic 9Cr steels on microstructure evolution[J].Materials Science and En-gineering:A,2009,510/511:64. |
[15] | Rojas, D.;Garcia, J.;Prat, O.;Sauthoff, G.;Kaysser-Pyzalla, A.R. .9%Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2011(15):5164-5176. |
[16] | Knezevic V;Balun J;Sauthoff G et al.Design of martensitic/fer-ritic heat-resistant steels for application at 650℃with support-ing thermodynamic modeling[J].Materials Science and Engi-neering:A,2008,477:334. |
[17] | 张红军;周荣灿;唐丽英 等.P92钢在650℃时效的组织性能研究[J].中国电机工程学报,2009,29(Sl):174. |
[18] | 刘俊亮,单爱党.新型铁素体耐热钢在650℃的蠕变特性及氧化行为[J].机械工程材料,2012(06):52-55. |
[19] | 殷凤仕,刘志良,薛冰,姜学波,周丽.微量碳和氮对9%Cr耐热钢中第二相析出行为的影响[J].动力工程学报,2010(04):258-262. |
[20] | ZHANG Wen-feng;LI Xiao-li;SHA Wei et al.Hot deformation characteristics of a nitride strengthened martensitic heat resistant steel[J].MATERIALS SCIENCE & ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING,2014,590:199. |
[21] | 石如星,刘正东,张才明.P92耐热钢δ-铁素体含量的热力学计算与试验分析[J].钢铁,2011(11):89-92. |
[22] | 包汉生,傅万堂,程世长,刘正东,杨钢.T122耐热钢中氮化硼(BN)化合物的探讨[J].钢铁,2005(10):68-71. |
[23] | 赵义瀚,赵成志,王健楠,蒋辰宇,袁玉平.δ铁素体形成机制以及对马氏体耐热钢冲击功的影响[J].钢铁,2013(04):70-75. |
[24] | 张斌,胡正飞.9Cr马氏体耐热钢发展及其蠕变寿命预测[J].钢铁研究学报,2010(01):26-31. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%