欢迎登录材料期刊网

材料期刊网

高级检索

为了研究电炉渣吸收CO2时电炉渣粒度分布对钙浸出率及过程控速的影响,以平均颗粒尺寸为20μm,不同偏离系数(CV)的电炉渣为研究对象,建立了电炉渣在0.05 mol/L醋酸溶液中的浸出动力学模型,并利用Mathematica8.0对模型进行了求解,并通过试验验证了模型的准确性。仿真结果表明,电炉渣在浸出70 min时,钙浸出率基本稳定,在浸出前70 min,浸出反应速率随着偏离系数的增大而增大,70 min后则随着偏离系数的增大而减小。随着电炉渣偏离系数的增大,电炉渣浸出过程受到化学反应控速越来越弱,而受到扩散控速先变强后变弱,在CV=0.7时扩散控速最强。通过试验数据与仿真结果对比,证明所建立的基于Gamma粒度分布的电炉渣钙浸出率动力学模型能较好的反映电炉渣在醋酸溶液中的浸出过程。

In order to discuss the effect of particle size distribution on calcium leaching rate and controlling step of reac-tion process when EAF slag is utilized for CO2 sequestration. Kinetic model is established for EAF slag leaching in 0.05 mol/L acetic acid solution,taking with an average size of 20μm,different coefficient variation (CV ) EAF slag as the ob-ject,and the model is solved with software Mathematica8.0,which is verified by experiments. The calculated results show that the calcium leaching rate keeps stable for 70 min,when coefficient variation increases,the reaction rate increas-es before 70 min,and turns down after that. The chemical reaction controlling for leaching process becomes worse,in correspondingly,diffusion controlling firstly turns better then worse,and has the best value for CV=0.7 .It can be con-cluded that by comparison with experimental results,kinetic model for calcium leaching based on Gamma particle size distribution can describe the process of EAF slag leaching in acetic acid solution.

参考文献

[1] 徐匡迪.低碳经济与钢铁工业[J].钢铁,2010(03):1-12.
[2] 郭廷杰.贯彻“十二五”发展规划,推进钢铁工业节能减排[J].节能,2012(02):4-7.
[3] 刘文权.“十二五”时期炼铁转型和技术升级[J].中国钢铁业,2012(11):14-17.
[4] James Ransford DANKWAH;Pramod KOSHY;Narendra M. SAHA-CHAUDHURY .Reduction of FeO in EAF Steelmaking Slag by Metallurgical Coke and Waste Plastics Blends[J].ISIJ International,2011(3):498-507.
[5] Yasuaki UEKI;Ryutaro Mll;Ko-ichiro OHNO .Reaction Behavior during Heating Waste Plastic Materials and Iron Oxide Composites[J].ISIJ International,2008(12):1670-1675.
[6] Zaharia M;Sahajwalla V;Khanna R et al.Carbon/slag interac-tions between Co-ke/rubber blends and EAF slag at 1 550 ℃[J].ISIJ International,2009,49(10):1513.
[7] Cao YI;Rong ZHU;Bo-yu CHEN .Experimental Research on (Reducing the Dust of BOF in CO_2 and O_2 Mixed Blowing Steelmaking Process[J].ISIJ International,2009(11):1694-1699.
[8] Inoue R;Ueda S;Wakuta K et al.Thermodynamic consider-ation on the absorption properties of carbon dioxide to basic ox-ide[J].ISIJ International,2010,50(11):1532.
[9] Huijgen WJJ;Witkamp GJ;Comans RNJ .Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J].Chemical Engineering Science,2006(13):4242-4251.
[10] CHEN Z;O'Connor W K;Gerdemann S J .Chemistry of aqueous mineral carbonation for carbonation sequestration and explana-tion of experimental results[J].Environmental Progress,2006,25(2):161.
[11] Huijgen W J J;Comans R J .Carbonation of steel slag for CO2 sequestration:leaching of products and reaction mechanism[J].Environmental Science and Technology,2006,40:2790.
[12] Huijgen W J J;Witkamp G J;Comans R J .Mineral CO2 se-questration by steel slag carbonation[J].Environmental Science and Technology,2005,39:9676.
[13] Huijgen W J J;Comans R J .Carbonation of steel slag for CO2 sequestration:leaching of products and reaction mechanism[J].Environmental Science and Technology,2006,40:2790.
[14] Sebastian Teir;Sanni Eloneva;Carl-Johan Fogelholm;Ron Zevenhoven .Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production[J].Energy,2007(4):528-539.
[15] Laurent De Windt;Perrine Chaurand;Jerome Rose .Kinetics of steel slag leaching: Batch tests and modeling[J].Waste Management,2011(2):225-235.
[16] Mark Pritzker .Modified shrinking core model for uptake of wa-ter soluble species onto sorbent particles[J].Adv Enviro Res,2004,8(34):439.
[17] Mgaidi A;Jendoubi F;Oulahna D et al.Kinetics of the dissolution of sand into alkaline solutions:application of a modified shrinking core model[J].HYDROMETALLURGY,2004,71(34):435.
[18] 白猛,郑雅杰,刘万宇,张传福.硫化砷渣的碱性浸出及浸出动力学[J].中南大学学报(自然科学版),2008(02):268-272.
[19] 占寿祥,郑雅杰.硫铁矿烧渣酸浸反应动力学研究[J].化学工程,2006(11):36-39.
[20] 杨俊奎,徐斌,杨大锦,钟宏,姜涛.复杂铜铅混合精矿氧压浸出综合回收工艺[J].昆明理工大学学报(自然科学版),2011(02):10-15.
[21] LI Na;ZHANG Ya-fei;KONG De-juan et al.Fluid particle group reaction model and experimental veri fi cation. Advanced Powder Technology(2012)[EB/OL].http://dx.doi.org/10.1016/j.apt.2012.06.001,2014-08-08.
[22] 金会心,李军旗,吴复忠.含稀土磷矿酸解动力学及稀土浸出机理[J].北京科技大学学报,2011(09):1071-1078.
[23] 杨显万;邱定蕃.湿法冶金[M].北京:冶金工业出版社,1997
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%