欢迎登录材料期刊网

材料期刊网

高级检索

为提高齿轮钢淬透性带控制精度,优化了齿轮钢成分控制目标及精度要求,建立合金加料计算机控制模型和成分调整规则库,开发基于增量神经网络的齿轮钢淬透性预报模型,形成一套完整的齿轮钢窄淬透性带宽控制技术,并将该技术应用于20CrMnTiH齿轮钢。研究结果表明,可实现窄淬透性带控制,J9和J15淬透性带宽不大于4HRC的比例分别达到93.3%和89.2%,不大于6HRC的比例分别达到99.3%和98.4%。

In order to improve the control precision of narrow hardenability band for gear steel,the target values and their precision range of component control were determined,and the computer control model of alloy addition and the rule base of composition adjustment were established,and hardenability prediction models were developed on the basis of in-cremental neural network. These control technologies of narrow hardenability band for gear steel were applied for the gear steel of 20CrMnTiH,the results show the reasonable hardenability band was obtained,the ratios of hardenability band≤4HRC of J9 and J15 reached 93.3% and 89.2%,respectively,ratios of hardenability band ≤6HRC reached 99.3% and 98.4%,respectively.

参考文献

[1] 谢海平,杨庆敏,刘骅震,乔兵.窄淬透性齿轮钢20CrMnTiH5工艺研究[J].中国冶金,2013(07):24-27.
[2] 杨延辉,王毛球,陈敬超,董瀚.齿轮钢高温渗碳后的疲劳性能[J].钢铁,2013(07):53-57,83.
[3] Fujita T;Ochi T;Tarui T .Prediction of hardness distribution in forged steel by neural network model[J].Nippon Steel Technical Report,2007,96(07):57.
[4] Geller A L;Kharchenko A V;Kachura E D et al.Effect of the composition on the hardenability and properties of complexly al-loyed steel for large-size parts[J].Metal Science and Heat Treat-ment,1995,37(5/6):187.
[5] Dobrzanski L A;Sitek W .Comparison of hardenability calcula-tion methods of the heat-treatable constructional steels[J].Jour-nal of Materials Processing Technology,1997,64:117.
[6] Dehghani K;Shafiei A .Predicting the bake hardenability of steels using neural network modelling[J].Materials Letters,2008,62:173.
[7] Li M V;Niebuhr D V;Meekisho L L et al.A computational model for the prediction of steel hardenability[J].Metallurgical and Materials Transactions:B,1998,29:661.
[8] 于庆波,刘相华,王国栋,孔宪刚,范开兰.基于人工神经网络预报汽车齿轮钢的端淬值[J].钢铁研究学报,2002(04):30-33.
[9] 左秀荣,薛向欣,姜茂发,张庆才,顾文俊.利用人工神经网络研究合金元素对SCM822H钢性能的影响[J].钢铁研究学报,2002(01):51-54.
[10] 林平,王福利,刘浏.基于多支持向量机齿轮钢淬透性预报方法的研究[J].钢铁研究学报,2010(01):4-8.
[11] 杨立红,刘浏,何平.基于双输出神经网络的转炉碳温控制模型[J].钢铁,2002(11):13-15,34.
[12] 丁容;刘浏 .转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(01):22.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%