欢迎登录材料期刊网

材料期刊网

高级检索

针对高温熔融高炉渣转杯粒化技术,为了探索离心粒化过程中熔渣颗粒形成的机理及熔渣体流量、转杯转动速度等参数对颗粒粒径的影响,以水为粒化试验工质,以直径110 mm的转杯为离心粒化器,开展了离心粒化可视化试验。研究了工质在转杯表面的流动和在转杯边缘形成液丝、液丝断裂成液滴的机理,以及液丝长度、顶端液滴粒径随时间的变化趋势;基于图像处理技术分析了转杯转速、工质流量对粒化液滴的粒径分布和平均粒径的影响规律。结果表明:转杯表面液膜在转杯边缘形成若干凸起,并沿转杯运动的切线方向延伸形成液丝,液丝长度随时间呈线性变化关系,液丝顶端液滴粒径基本保持不变;随着工质流量降低和转杯转速升高,液滴平均粒径呈减小趋势,液滴速度接近转杯圆周速度。

Based on the granulation technology for high temperature molten blast furnace slag by rotary cup, visualization experiments were conducted by applying water as the substitute for slag and a rotary cup with diameter of 110mm to inves-tigate the flow mechanism on the rotary cup surface and the formation of liquid ligament at the edge of the rotary cup. The dynamic behaviors of the liquid ligament length and the diameter of ligament head were obtained. The effects of rotary speed, liquid flow rate on diameter distribution of the granulated droplets were discussed. The experimental results indi-cate that the liquid film on the cup surface formed some heaves along the edge of the cup and formed liquid ligaments along the tangential direction of the rotary cup movement; the ligament length almost linearly increased as time pro-gressed, while the diameter of ligament head approximately kept a constant value. The average diameter of the granulated droplets decreased with the increase of rotary speed and the decrease of the liquid flow rate.

参考文献

铝矾土是生产耐火材料的主要原料,由于多年的无序开采,优质矿石越来越少.选用合理的选矿流程,先进的选矿技术,提纯低品级耐火原料,综合利用现有资源,是今后的研究课题和发展方向.对菱镁矿浮选厂的工艺技术改造进行了试验研究,将\"二反一正\"脱硅浮选流程改为\"全反\"浮选流程,将反浮选扫选尾矿和尾矿分选后所得中矿返回再选,使浮选技术更先进,工艺更合理,精矿产率提高15%,精矿品位提高0.38%,选矿废水全部回收利用,实现废水零排放.菱镁矿风选和铝矾土选矿提纯应由试验研究转向生产应用,形成生产力.镁精矿粉的后序加工选用先进的生产工艺和节能煅烧窑炉,降低能耗44%.","authors":[{"authorName":"王玉斌","id":"15ef8bf9-bacd-41e5-8dea-518e625bbbef","originalAuthorName":"王玉斌"}],"doi":"10.3969/j.issn.1001-1935.2009.01.019","fpage":"69","id":"6043d4ae-6f2e-4bd9-8850-7395c8aa3787","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"3347789f-fe0f-48df-b42b-337b37ee87f7","keyword":"菱镁矿","originalKeyword":"菱镁矿"},{"id":"ba49008f-3198-4c3b-bed6-6bf4e4e6ba11","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"2d7e1552-af55-416c-890f-ce800b09dd0d","keyword":"选矿工艺","originalKeyword":"选矿工艺"},{"id":"af6fb033-366d-4a70-a1e0-d5db658fab1a","keyword":"反浮扫选","originalKeyword":"反浮扫选"},{"id":"84c41c7e-f2b2-4430-b0da-33d138a218aa","keyword":"后序加工","originalKeyword":"后序加工"}],"language":"zh","publisherId":"nhcl200901019","title":"浅谈菱镁矿和铝矾土的提纯","volume":"43","year":"2009"},{"abstractinfo":"为制备高性能的木塑复合材料,扩展其应用领域,采用A-171硅烷偶联剂对竹粉进行表面改性,并添加一定量的铝矾土,经热压成型制备了竹粉/高密度聚乙烯(HDPE)复合材料.分析了铝矾土用量对竹粉/HDPE复合材料力学性能、耐热性和摩擦性能的影响.采用XRD分析了铝矾土的结晶特性,利用SEM和EDS分析了竹粉/HDPE复合材料的断面形貌和表面元素分布情况.结果表明:加入适量铝矾土后,竹粉/HDPE复合材料的力学强度、耐热性及耐磨性能得以改善.铝矾土在竹粉/HDPE复合材料基体中分布均匀,可有效承担载荷,同时提高了竹粉/HDPE复合材料的结晶性能,降低了竹粉/HDPE复合材料在外在应力下引起的变形和破坏;但铝矾土用量过高,分布不均匀,容易形成团聚现象,导致竹粉/HDPE复合材料的力学强度和耐磨性降低,线性热膨胀系数增大.","authors":[{"authorName":"周亚巍","id":"7e215bdc-da72-48db-a39b-686094f49ce3","originalAuthorName":"周亚巍"},{"authorName":"宁莉萍","id":"9603d06d-17b7-4ec9-bc5a-57d6bb7b779f","originalAuthorName":"宁莉萍"},{"authorName":"李贤伟","id":"4940732c-0701-479c-92a1-ea1e33577b7a","originalAuthorName":"李贤伟"},{"authorName":"张娟","id":"81e02978-bb21-4c8d-a1dc-6f41c263101d","originalAuthorName":"张娟"},{"authorName":"陈琦","id":"bf8feb89-df77-4ac5-8ba7-d12bad58253e","originalAuthorName":"陈琦"},{"authorName":"杨晓艳","id":"2d6d504e-15ab-4f77-b229-08f5fee9b03d","originalAuthorName":"杨晓艳"}],"doi":"10.13801/j.cnki.fhclxb.20141105.005","fpage":"977","id":"20966f25-70a7-4d98-8c16-dde34a0f3079","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"28912231-141c-4bef-aaa9-a2bd744893a9","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"f39fa3ae-216d-45c6-a6d0-f0e1b5da697b","keyword":"竹粉","originalKeyword":"竹粉"},{"id":"49b53269-bdea-46dd-bea0-dca9dc82d44e","keyword":"HDPE","originalKeyword":"HDPE"},{"id":"5d239fe4-ec1e-43ec-bc2e-ff46b0a0ffcb","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"66e1c586-0f69-4d86-a612-690c73414978","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"5c216a70-b8bf-40c1-8736-f0a9e6daf6c7","keyword":"摩擦性能","originalKeyword":"摩擦性能"},{"id":"2aaf3695-8f24-4103-8710-63497ad5d4bf","keyword":"耐热性","originalKeyword":"耐热性"}],"language":"zh","publisherId":"fhclxb201504008","title":"铝矾土改性竹粉/HDPE复合材料性能","volume":"32","year":"2015"},{"abstractinfo":"研究了铝矾土代替萤石造精炼渣的可行性.采用Thermo-Calc软件计算的LF精炼过程的热力学平衡结果表明:1 600℃时炉渣由萤石造渣的液固两相渣转变为铝矾土造渣的液态渣,钢水的脱氧和脱硫效果基本不变.生产试验结果表明:铝矾土造精炼渣时钢水平均脱硫率比萤石造精炼渣时提高了7.7%.","authors":[{"authorName":"耿涛","id":"5538ac91-a3a4-454c-92fa-abaed2ca059a","originalAuthorName":"耿涛"},{"authorName":"邹长东","id":"9e4fc04c-c58c-4daa-9c8b-49d328af3a87","originalAuthorName":"邹长东"},{"authorName":"周彦召","id":"68858d7b-e313-4822-a5fc-e1ee6a82d581","originalAuthorName":"周彦召"},{"authorName":"丁振涛","id":"105e00d6-e8b0-4016-8bd4-1fc97719709a","originalAuthorName":"丁振涛"}],"doi":"","fpage":"24","id":"e8d20cd2-877f-4e80-a439-fd14a8e8ba8e","issue":"4","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"bfa30841-a33f-4f3b-8250-4bda8f4893fc","keyword":"萤石","originalKeyword":"萤石"},{"id":"4582df0e-27e3-4363-8e46-ce71257e1643","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"b3f6af95-7b85-410b-a063-d89d451b8a13","keyword":"精炼渣","originalKeyword":"精炼渣"},{"id":"2dcaea10-e24b-45d8-ad9b-2984d6251ceb","keyword":"LF","originalKeyword":"LF"}],"language":"zh","publisherId":"shjs201304007","title":"铝矾土代替萤石造精炼渣的可行性研究","volume":"35","year":"2013"},{"abstractinfo":"利用TG-DSC-DTG对不同品级铝矾土进行热分析,研究不同品级铝矾土在不同温度下的均化烧结情况,利用XRD、SEM对均化矾土熟料的物相组成和微观结构进行研究.结果表明:Al2O3含量为89%(S级)、84%(Ⅰ级)和74%(ⅡA级)的铝矾土,其最佳均化烧结温度分别为1580℃、1600℃和1650℃,各级均化矾土熟料在最佳烧结状态下的晶体结构和生长形态为:S级、Ⅰ级均化矾土熟料主要为发育良好的刚玉晶粒,大部分呈长柱状,少量呈等轴状,晶粒间结合紧密,杂质均匀分布在晶界的玻璃相中;ⅢA级均化矾土熟料中刚玉相与莫来石相共存,晶粒发育良好,莫来石晶体为长柱状.","authors":[{"authorName":"郭玉香","id":"645a1860-11ad-436b-8f53-87135787c509","originalAuthorName":"郭玉香"},{"authorName":"曲殿利","id":"c47b566c-0bba-4814-a38e-ab462f05c3a2","originalAuthorName":"曲殿利"},{"authorName":"姚瑶","id":"979db220-df52-4815-bdc8-7fa5edfd12a0","originalAuthorName":"姚瑶"}],"doi":"","fpage":"273","id":"5fdc8ae1-91b2-44d6-9ffd-aba992d17fe4","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"4a26be49-ad2b-42e7-a5fc-5fb955f198d0","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"c70431f8-7477-4640-adbb-6b0fc28ce532","keyword":"均化烧结","originalKeyword":"均化烧结"},{"id":"115061f2-6b6c-4e2c-bec1-bfc6b0eff275","keyword":"烧结性能","originalKeyword":"烧结性能"},{"id":"7ba04039-f8a5-4396-9989-eacd52f326c4","keyword":"微观结构","originalKeyword":"微观结构"}],"language":"zh","publisherId":"rgjtxb98201601046","title":"不同品级铝矾土均化烧结性能及微观结构的研究","volume":"45","year":"2016"},{"abstractinfo":"灌浆材料是一种具有广泛应用领域的工程材料,为了满足抢修、抢建的快速施工需求,需要大幅度缩短凝结时间;利用铝矾土和石膏在水泥浆体中能够快速生成钙矾石的特点达到提高凝结速度的目的.通过调整铝矾土和石膏的细度、掺量,研究灌浆材料凝结时间的变化规律.结果表明:水胶比是影响凝结时间和流动度的关键因素;在满足灌浆施工流动度前提下,铝矾土和石膏SO3/Al2O3物质的量比为3,总掺量(粒径0.08 mm)在10 ~ 15%时,灌浆材料的初凝时间能够控制在0.5~1h,终凝时间在1~2h范围,而且它们的膨胀率一个月以后稳定在0.2%以内.","authors":[{"authorName":"戴银所","id":"ef34a932-d344-4c83-ab65-bd2285805773","originalAuthorName":"戴银所"},{"authorName":"谭跃虎","id":"0c96610e-c1f2-46fe-bb73-a26b5a26d2f2","originalAuthorName":"谭跃虎"},{"authorName":"谢江南","id":"305dd33c-f031-4347-9b67-1538b2b14a6b","originalAuthorName":"谢江南"},{"authorName":"朱正亮","id":"82bb478f-5a5c-4984-84b8-d283c96b6f4c","originalAuthorName":"朱正亮"},{"authorName":"丁建党","id":"4e8c38e1-9e12-429b-a170-6ea5cb032ac8","originalAuthorName":"丁建党"},{"authorName":"杨庆恒","id":"bbb0712e-4af4-42d6-a25a-2ed45bec3438","originalAuthorName":"杨庆恒"}],"doi":"","fpage":"340","id":"5e4634e2-de4c-4a0c-aaa6-1037e138716d","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"c77270e7-fb80-4237-88a0-f97010621456","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"e5b1b3b4-66d0-4eb6-aefa-58a8dc4bb840","keyword":"石膏","originalKeyword":"石膏"},{"id":"eb68388f-4235-4093-87e9-13763d863bcf","keyword":"灌浆材料","originalKeyword":"灌浆材料"},{"id":"52131ee8-a22e-4039-8c82-b2ee7024f003","keyword":"钙矾石","originalKeyword":"钙矾石"},{"id":"7f346e9f-3cb8-4a87-a9d1-7428556d2f31","keyword":"凝结时间","originalKeyword":"凝结时间"},{"id":"e876c6cd-11ac-4709-ae8a-73c3516e08bb","keyword":"膨胀","originalKeyword":"膨胀"}],"language":"zh","publisherId":"gsytb201302031","title":"铝矾土、石膏复合掺对灌浆材料凝结时间的影响","volume":"32","year":"2013"},{"abstractinfo":"为实现Al2O3-SiO2质浇注料的轻量化而采用部分轻烧铝矾土骨料,将w(Al2O3)为71%的铝矾土生料分别经900和1 100℃轻烧,破碎分级成5~3、3~1和≤1 mm的骨料.在矾土基超低水泥浇注料基础配比中,分别以质量分数15%、30%和45%的轻烧骨料等量取代特级矾土熟料,检测了各项常规性能并借助扫描电镜观察了显微结构.结果表明:随轻烧骨料加入量的增多,浇注料的需水量增加,显气孔率增加,体积密度下降;1 350℃烧后的加热永久线变化率呈下降趋势,但即使加入轻烧料高达45%(w)时,仍能保持残余膨胀;烘干后的抗折强度有所下降,但对1 000和1 350℃烧后抗折强度影响不大,甚至1 000℃烧后的强度有所增加;1 300℃的高温抗折强度有所降低.对于使用温度在1 350℃以下气氛炉用铝硅质浇注料,用900~1 100 ℃轻烧铝矾土骨料部分取代其熟料骨料,可实现浇注料的轻量化.","authors":[{"authorName":"常艳丽","id":"edbb4ad1-3502-41ff-b467-60675e696b03","originalAuthorName":"常艳丽"},{"authorName":"周宁生","id":"cfe7a0a3-258c-4961-842a-dc1c2a3f4060","originalAuthorName":"周宁生"}],"doi":"10.3969/j.issn.1001-1935.2014.01.003","fpage":"13","id":"1f0ca9dc-fbeb-46e7-8429-ff4b0b3fa5cb","issue":"1","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"f3c16144-955b-4803-842a-00a620de0fbe","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"9045b036-8a47-49e2-9b8f-09ecda73f4f9","keyword":"轻烧骨料","originalKeyword":"轻烧骨料"},{"id":"33a362bb-357d-4958-9739-cbd81b109cdc","keyword":"超低水泥浇注料","originalKeyword":"超低水泥浇注料"},{"id":"6f7005ac-dd89-46a5-874e-f38cfa53d4b9","keyword":"Al2O3-SiO2系","originalKeyword":"Al2O3-SiO2系"}],"language":"zh","publisherId":"nhcl201401003","title":"轻烧铝矾土骨料对Al2O3-SiO2质超低水泥浇注料性能的影响","volume":"48","year":"2014"},{"abstractinfo":"以低品位铝矾土和钛铁矿为原料,焦炭为还原剂在不同温度下进行碳热还原氮化反应(CRN),制备β-Sialon/Ti(C,N)复相粉体,其中钛铁矿与铝矾土的质量比为50∶50,同时对反应产物进行XRD物相分析和SEM显微形貌分析.结果显示:原料反应的最佳温度为1250℃,在此温度下产物物相主要为β-Sialon(z=3)、α-Al2O3 Ti(C,N)和单质铁;在低于此温度下产物主要为莫来石,在较高温度下反应产物主要为AlN.反应产物中,p-Sialon微观形貌呈柱状,AlN主要以片状形态存在,单质铁主要以球状形态存在.","authors":[{"authorName":"申见昕","id":"0c5a271f-3461-44d3-bcaa-3e14078d55fe","originalAuthorName":"申见昕"},{"authorName":"杨得鑫","id":"29fa9468-d492-4976-86dd-ae66867a25b6","originalAuthorName":"杨得鑫"},{"authorName":"陈永博","id":"56adc790-bbd7-4da5-add9-a581a2ff345f","originalAuthorName":"陈永博"},{"authorName":"王宝辰","id":"799a8dec-0fde-42e8-af44-c7644f827eb1","originalAuthorName":"王宝辰"},{"authorName":"刘艳改","id":"8839165b-bd81-4e5c-b0a4-a7643c75276a","originalAuthorName":"刘艳改"}],"doi":"","fpage":"470","id":"9af43cb4-fff9-46c1-82fa-b91a579020db","issue":"3","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"3c4934cc-b578-4246-a737-be056aaae2b8","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"d6a4efa8-dfa2-42e7-b3b0-73f07a578539","keyword":"CRN","originalKeyword":"CRN"},{"id":"2e88be36-23f1-4182-8cf4-dbfdebbfd687","keyword":"β-Sialon/Ti(C,N)","originalKeyword":"β-Sialon/Ti(C,N)"},{"id":"8d1c3068-0331-43ae-a575-5dfbe6ed6ebc","keyword":"复相粉体","originalKeyword":"复相粉体"}],"language":"zh","publisherId":"rgjtxb98201303019","title":"反应温度对低品位铝矾土和钛铁矿制备β-Sialon/Ti(C,N)复相粉体的影响","volume":"42","year":"2013"},{"abstractinfo":"以菱镁矿和煅烧二级铝矾土为主要原料、焦炭为还原剂,在氮气气氛下,通过碳热还原氮化法(CRN)合成复相Spinel-Sialon粉体,并制备出Spinel-Sialon复相耐高温材料.应用XRD和SEM等技术,研究了原料配比和粉体的预合成温度对复相耐高温材料抗折强度的影响.结果表明,所制备的Spinel-Sialon复相耐高温材料的物相为MgAl_2O_4和Si_3Al_3O_3N_5,其平均抗折强度可达239 MPa;粉料在1500 ℃下预合成比在1600 ℃下预合成更有利于试样烧结致密和提高材料的抗折强度,并且随菱镁矿添加量的增加,试样的显气孔率降低、体积密度增加、平均抗折强度增加.","authors":[{"authorName":"刘艳改","id":"9095db28-1db0-4d3e-b5f0-92becc50458d","originalAuthorName":"刘艳改"},{"authorName":"冷先锋","id":"f9c2b924-4c6c-47ef-a229-19e2e69bcc98","originalAuthorName":"冷先锋"},{"authorName":"黄赛芳","id":"924894fe-1166-428b-9bba-d00f88328886","originalAuthorName":"黄赛芳"},{"authorName":"黄军同","id":"1f37ebb0-24da-4eaf-8119-fb26722f70d8","originalAuthorName":"黄军同"},{"authorName":"房明浩","id":"1bf1eabf-6fec-4033-a7c0-bcce88b82a7c","originalAuthorName":"房明浩"},{"authorName":"黄朝晖","id":"9de4ebb7-511d-4c34-bed7-2f137539cf2d","originalAuthorName":"黄朝晖"}],"doi":"","fpage":"1248","id":"c4eb9e10-ad40-4e81-a923-de80b0d71435","issue":"z2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9c642ea2-1df0-4eac-9ebb-399be3a15b03","keyword":"菱镁矿","originalKeyword":"菱镁矿"},{"id":"686c965f-0123-492a-b622-e0ace433e4f3","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"51f84a3e-26c5-435f-b713-12fd6554055c","keyword":"碳热还原氮化","originalKeyword":"碳热还原氮化"},{"id":"d6bc641e-d6c3-480a-a660-1edb523973c4","keyword":"Spinel-Sialon复相材料","originalKeyword":"Spinel-Sialon复相材料"},{"id":"e52cca8d-fffa-4a00-b182-979811a93622","keyword":"抗折强度","originalKeyword":"抗折强度"}],"language":"zh","publisherId":"xyjsclygc2009z2332","title":"用菱镁矿和铝矾土碳热还原氮化制备Spinel-Sialon复相耐高温材料及其性能","volume":"38","year":"2009"},{"abstractinfo":"研究了以高铝矾土熟料和锆英砂为原料,采用电熔工艺法制备的矾土基电熔锆刚玉和锆莫来石合成料的理化性能、物相组成和显微结构,并用这些合成料制备了Al2O3-ZrO2-C试样,检测其常温物理性能、高温抗折强度和抗热震性;同时还与氧化铝基电熔锆刚玉和锆莫来石合成料进行了相应性能的比较.结果表明,矾土基电熔合成料的化学矿物组成、性能和显微结构均与氧化铝基电熔锆刚玉和锆莫来石合成料的相似,而且用其生产的Al2O3-ZrO2-C制品的性能也达到了用氧化铝基电熔合成料所能达到的水平,可用于实际生产.","authors":[{"authorName":"葛铁柱","id":"d9b4dd93-5652-4b1d-8106-edfe2af9b389","originalAuthorName":"葛铁柱"},{"authorName":"梁耀华","id":"1472fcce-07d2-49f5-89ef-c4c29e259898","originalAuthorName":"梁耀华"},{"authorName":"钟香崇","id":"60bc9db8-a0fd-42ad-8cd7-b75c947d2217","originalAuthorName":"钟香崇"}],"doi":"10.3969/j.issn.1001-1935.2005.02.006","fpage":"101","id":"03bce966-e6ff-48fa-b4eb-a53b156aafec","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"a410a2c7-a89c-4357-a34d-46c767a86b9c","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"85930c36-0edc-42d8-87a4-33451eb70938","keyword":"电熔锆刚玉","originalKeyword":"电熔锆刚玉"},{"id":"4c20453f-461f-49de-addd-992c8c8ff27d","keyword":"电熔锆莫来石","originalKeyword":"电熔锆莫来石"},{"id":"e9fb3ba1-a5a4-43dd-89c2-ebe3675a69f7","keyword":"合成料","originalKeyword":"合成料"}],"language":"zh","publisherId":"nhcl200502006","title":"矾土基电熔锆刚玉和锆莫来石合成料的制备、性能与结构","volume":"39","year":"2005"},{"abstractinfo":"设计β-SiAlON的z值为3,以68%的生矾土(粒度≤0.074 mm,烧后Al2O3含量约68%)、13%的硅粉(粒度≤0.021 mm)和19%的炭黑(粒度≤5 μm)为原料混合均匀后,装入坩埚中,在氮化炉中分别于1100 ℃、1200 ℃、1300 ℃、1350 ℃、1400 ℃、1450 ℃、1500 ℃和1550 ℃氮化处理6 h后,测氮化后试样的质量变化率,并借助XRD、SEM及EDS等手段,同时研究了C-Si复合还原氮化合成矾土基β-SiAlON的反应过程.研究结果表明:(1)采用C-Si复合还原氮化的试样,在1100~1200 ℃时主要是Si与氮气和SiO2反应生成的Si2N2O;1300~1400 ℃时,C开始参与还原氮化反应,体系中开始有β-SiAlON生成;1450~1550 ℃时,β-SiAlON量逐渐增多,1500 ℃达到最大值.(2)与单一采用C、Si的试样相比,采用C-Si复合还原氮化的试样生成的β-SiAlON含量相对高,结晶形貌相对较好.","authors":[{"authorName":"郭艳芹","id":"4915c4ae-7551-4abb-8797-750fc22f1f50","originalAuthorName":"郭艳芹"},{"authorName":"李素平","id":"eaa5cf6d-fcf7-43d5-ac3b-303f4dd50ff5","originalAuthorName":"李素平"},{"authorName":"钟香崇","id":"81544d51-ebb9-4749-90ea-58dd84cd308a","originalAuthorName":"钟香崇"}],"doi":"10.3969/j.issn.1001-1935.2006.05.009","fpage":"349","id":"773a9fc0-2ec2-48b1-a274-e62b2558fd93","issue":"5","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"68997f29-a987-4420-99ff-f16f6b6d679f","keyword":"铝矾土","originalKeyword":"铝矾土"},{"id":"ad8eac52-6684-4b91-9acc-03510a2b8209","keyword":"β-SiAlON","originalKeyword":"β-SiAlON"},{"id":"f46e87b7-f1b4-4cfd-9e1f-54abe32c2380","keyword":"炭黑","originalKeyword":"炭黑"},{"id":"533f315b-0e95-4d22-95df-24f95d5e0ca7","keyword":"硅粉","originalKeyword":"硅粉"},{"id":"52e99f09-667e-44da-82cf-db1990753ba9","keyword":"还原氮化反应","originalKeyword":"还原氮化反应"}],"language":"zh","publisherId":"nhcl200605009","title":"C-Si复合还原氮化合成矾土基β-SiAlON","volume":"40","year":"2006"}],"totalpage":27,"totalrecord":266}