欢迎登录材料期刊网

材料期刊网

高级检索

冷却壁安全工作是保证高炉长寿的基础。通过设计并建造冷却壁热态实验炉,研究了高炉铸铁冷却壁热面无渣皮和有渣皮时的非稳态传热过程,考察了不同炉气温度条件下冷却壁热电偶温度的变化规律。回归得到了炉气在升温阶段、稳定阶段、降温阶段时冷却壁热电偶温度随时间的变化关系式。计算得出了冷却壁热面在有无渣皮条件下的平均热流强度,回归得出了炉气平均对流换热系数随炉温的变化关系。结果表明,冷却壁热面在有渣皮时热电偶温度的变化速率显著低于无渣皮时的变化速率,冷却壁破损的主要原因是冷却壁温度的反复变化和渣皮的频繁脱落而产生的热应力。

BF campaign is of great significance for efficient, sustainable development of iron and steel enterprises. Smooth operation and the service life of the cooling stave is one of the fundamental factors affecting the life of a blast fur-nace, and therefore subject to focus on the stave efficient longevity research. Through design and construction of hot test furnace for cooling stave, unsteady state heat transfer of blast furnace cooling stave was studied under condition of with or without slag crust and changing rules of thermocouple temperature under different furnace temperatures were also ana-lyzed. Changing rules of thermocouple temperature at heating stage, steady stage and cooling stage were obtained by re-gression method. Average heat flux intensity without slag crust was calculated and through regression method convective heat transfer coefficient was obtained. It was concluded that the changing rate of thermocouple temperature which embed-ded in the cooling stave under condition of with slag crust is significantly lower than without slag crust. The damage of cooling stave is mainly due to thermal stress produced by repeatedly change of temperature and frequently production and separation of slag crust, which shows the actions that are being executed and the results that are extending the cooling stave service lives.

参考文献

[1] 张寿荣;于仲洁.武钢高炉长寿技术[M].北京:冶金工业出版社,2010
[2] ZHANG Shou-rong.Practice for Extending Blast Furnace Campaign Life at Wuhan Iron and Steel Corporation[J].钢铁研究学报(英文版),2006(06):1-7,20.
[3] WU L J;ZHOU W G;CHENG H E et al.The Study of Struc-ture Optimization of Blast Furnace Cast Steel Cooling Stave Based on Heat Transfer Analysis[J].Applied Mathematical Mod-elling,2007,31:1249.
[4] 程素森;杨天钧;左海滨 等.高炉炉身下部及炉缸炉底冷却壁系统的传热学计算[J].钢铁研究学报,2004,16(05):10.
[5] 宁晓钧;程素森;解宁强 .薄形铜冷却壁的热态实验分析[J].北京科技大学学报,2007,29(增2):126.
[6] 宋阳升;杨天钧;吴懋林 等.高炉冷却壁冷却能力的计算和分析[J].钢铁,1996,30(增1):9.
[7] 陈素森;贺友多;吴启常 .高炉凸台冷却壁的温度场计算[J].钢铁,1994,29(01):15.
[8] 吴俐俊 .基于传热分析的高炉冷却壁结构优化和智能仿真方法的研究[D].上海交通大学,2005.
[9] 刘增勋,吕庆.不同工况下铸铁冷却壁热负荷分析[J].钢铁,2009(02):20-22,27.
[10] 石琳;马详;刘志成.埋铜管式铸铜冷却壁与合金化管铸铁冷却壁的应用研究[A].北京:中国金属学会,2009:860.
[11] 周传典.高炉炼铁生产技术手册[M].北京:冶金工业出版社,2002
[12] 威尔特;威克斯;威尔逊.动量热量、质量传递原理[M].北京:化学工业出版社,2005
[13] 沈宗斌.高炉冷却壁热应力计算与研究[J].华东冶金学院学报,1997(03):314-317.
[14] 钱中,吴俐俊,程惠尔,邓凯.高炉冷却壁非稳态传热研究[J].钢铁,2005(06):21-23.
[15] 石琳,程素森,冯力,沈猛.冷却水管表面合金化球墨铸铁冷却壁的热应力和热变形[J].北京科技大学学报,2007(09):942-947.
[16] 刘琦.采用铜冷却壁,延长高炉炉体寿命[J].中国冶金,2003(05):12-16.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%