欢迎登录材料期刊网

材料期刊网

高级检索

通过添加不同量的Zr56 Co22 Al16 Ag6非晶合金条带对用Al-5Ti-1B预细化的A356铝合金进行细化变质处理,然后再进行固溶时效热处理,研究了合金的显微组织和力学性能,并探讨了非晶合金的细化强化机制.结果表明:随着非晶合金添加量的增加,铝合金的晶粒尺寸和二次枝晶间距均逐渐减小,力学性能得到了提高;铝合金的共晶组织中出现了弥散分布的颗粒状 Al3 Zr 相,该相作为非均质形核的核心,起到细化晶粒的作用;加入质量分数为0.4%的非晶合金,并设定孕育期为10 min,铝合金可获得最佳的细化效果,其经固溶时效处理后的抗拉强度和伸长率比未加入非晶合金的分别提高了7%和64.4%.

A356 aluminum alloy with Al-5Ti-1B pre-refine treatment was modified by adding various amounts of Zr56 Co22 Al16 Ag6 amorphous alloy ribbons,and then solid solution and aging heat treatment was executed on the aluminum alloy.The microstructure and mechanical properties of the aluminum alloy were studied, and the amorphous ribbon′s refine mechanism was also discussed.The results show that with the increase of amorphous alloy ribbon′s adding amounts,grain size and the secondary dendrite spacing of the aluminum alloy all decrease,and the mechanical properties of the aluminum alloy are improved.Dispersed granular Al3 Zr phase is found in eutectic structure,the phase increases the number of nucleus,hence refines the grains.Adding 0.4wt% Zr56 Co22 Al16 Ag6 amorphous alloy ribbons and setting incubation period of 10 min could make the aluminum alloy obtain the best refining effect,and after solid solution and aging treatment,tensile strength and elongation of the aluminum alloy owned the higher mechanical properties,compared with the aluminum alloy without adding amorphous ribbons,its tensile strength and elongation increased by 7%and 64.4%,respectively.

参考文献

[1] DONG Yun;ZHENG Runguo;LIN Xiaoping;YE Jie;SUN Ling.Investigation on the modification behavior of A356 alloy inoculated with a Sr-Y composite modifier[J].稀土学报(英文版),2013(02):204-208.
[2] Limmaneevichitr C.;Eidhed W..Fading mechanism of grain refinement of aluminum-silicon alloy with Al-Ti-B grain refiners[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20031/2(1/2):197-206.
[3] 李娅珍;王士贺;赵维民;王志峰;范学义;林晓娉.不同状态中间合金对A356合金组织的影响[J].特种铸造及有色合金,2009(09):863-866.
[4] 李鹏;刘道新;关艳英;成书民;赵远兴;曹亮;李欢.喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J].机械工程材料,2015(1):86-89,93.
[5] 姬浩;刘国光.孔挤压强化对7A85铝合金锻件组织和疲劳性能的影响[J].机械工程材料,2015(6):25-28.
[6] 傅高升;孙锋山;王连登;康积行.中间合金对铝合金细化处理的现状分析与初探[J].特种铸造及有色合金,2001(2):50-53.
[7] 张柏清;马洪涛;李建国;方鸿生.Al-Ti-C中间合金细化剂的组织及其细化性能[J].金属学报,2000(4):341-346.
[8] 贺永东;张新明.微量Cr、Mn、Ti、Zr细化7A55铝合金铸锭组织的效果与机理[J].中国有色金属学报,2005(10):1594-1601.
[9] 熊明华;严红革;苏斌;陈吉华;曾佩兰;吴远志.亚晶及析出相强化对Al-Zn-Mg-Cu合金性能的影响[J].特种铸造及有色合金,2012(11):1062-1066.
[10] J. D. Robson.A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium[J].Acta materialia,20046(6):1409-1421.
[11] 贾志宏;Jean-Philippe COUZINI(E);Nadia CHERDOUDI;van GUILLOT;Lars ARNBERG;Petter(A)SHOLT;Stig BRUSETHAUG;Bruno BARLAS;Denis MASSINON.Al-Cu-Zr和Al-Cu-Zr-Ti-V合金中Al3Zr析出相的析出行为[J].中国有色金属学报(英文版),2012(8):1860-1865.
[12] Zhonghua Zhang;Xiufang Bian;Yan Wang.Solidification microstructure formation of an Al-Ce-Sr alloy under conventional and rapid solidification conditions[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20021/2(1/2):134-141.
[13] 张伟;邢远;贾志宏;杨晓芳;刘庆;朱昌洛.添加微量Sc、Zr对超高强铝合金微观结构和性能的影响[J].中国有色金属学报(英文版),2014(12):3866-3871.
[14] Shengli Zhu;Guoqiang Xie;Hao Wang.Zr-baseci bulk metallic glass composite with in situ precipitated nanocrystals[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:155-158.
[15] XU Xue-wen;FU Cheng-ke;LI Yang-xian;ZHU Jiao-qun;MEI Bing-chu.Fabrication of monolithic bulk Ti3AlC2 and impurity measurement by K-value method[J].中国有色金属学会会刊(英文版),2006(z1):490-493.
[16] B. Baradarani;R. Raiszadeh.Precipitation hardening of cast Zr-containing A356 aluminium alloy[J].Materials & design,20112(2):935-940.
[17] 王淑俊,刘相法.含Zr铝合金的细化新工艺[C].第十二届全国特种铸造及有色合金学术年会、第六届全国铸造复合材料学术年会暨2008年福建省铸造学术年会论文集,2008:186-188.
[18] 谢优华,杨守杰,戴圣龙,陆政.Zr对超高强铝合金铸态组织及晶粒度的影响[C].中国有色金属学报(全国第一届铝合金及其应用会议:论文专辑),2001:131-135.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%