欢迎登录材料期刊网

材料期刊网

高级检索

基于两种热力学数据获取方法(直接耦合 Thermo-Calc 相图计算法与调用拟合函数法)对Al-4Cu-6Si合金的凝固路径进行数值计算;为验证这两种方法的正确性,选取 Al-15.05Cu-6.17Si合金进行凝固试验,并将试验结果与计算结果进行对比.结果表明:Al-4Cu-6Si 合金的凝固路径分为三个阶段,即L+α→ L+α+Si → L+α+θ+Si;耦合Thermo-Calc相图计算法计算得到的初生相、两相共晶、三相共晶的体积分数分别为50.813%,37.234%,11.953%,调用拟合函数法的计算结果分别为50.809%,38.000%,11.191%;两种方法的计算精度比较接近,但调用拟合函数法的计算效率更高,运行时间仅为直接耦合Thermo-Calc相图计算法的1.21%;Al-15.05Cu-6.17Si合金的凝固试验验证了采用这两种热力学数据获取方法进行凝固路径计算的正确性.

Solidification path of Al-4Cu-6Si alloy was calculated based on two different thermodynamic data-acquisition methods:direct coupling with Thermo-Calc and calling regression functions.In order to verify the correctness of the above two kinds of methods,a parallel experimental investigation on Al-15.05Cu-6.17Si alloy was carried out to compare with calculation results.The results show that the solidification path of Al-4Cu-6Si alloy was L+α→L+α+Si→L+α+θ+Si.The volume fraction of primary phase,binary eutectic and ternary eutectic calculated by coupling with Thermo-Calc method were 50.813%,37.234%,11.953%,respectively,and the calculation results got by calling regression functions method were 50.809%,38.000%,11.191%.Comparing the calculation results from the two kinds of thermodynamic data-acquisition methods,it was found that the accuracy of the two methods was relatively close,but calling regression function method was much more efficient than coupling with Thermo-Calc method.The time of calling regression function method was 1 .2 1% of coupling with Thermo-Calc method.The correctness for calculating solidification path through two different thermodynamic data-acquisition methods was demonstrated by using solidification experiment of Al-15.05Cu-6.17Si alloy.

参考文献

[1] 吴星宇;龙思远;刘欢;王林.锰、锶含量对铸造铝硅合金铁相形貌和相组成的影响[J].机械工程材料,2014(11):50-53,71.
[2] 汤忖江;尚成嘉;王学敏.多相材料的细观力学有限元模拟研究进展[J].机械工程材料,2015(2):1-7,102.
[3] 高增;牛济泰.材料物理模拟技术的发展及其在中国的应用[J].机械工程材料,2014(11):1-6.
[4] Ferreira, IL;Voller, VR;Nestler, B;Garcia, A.Two-dimensional numerical model for the analysis of macrosegregation during solidification[J].Computational Materials Science,20092(2):358-366.
[5] X. Yan;S. Chen;F. Xie.Computational and experimental investigation of microsegregation in an Al-rich Al-Cu-Mg-Si quaternary alloy[J].Acta materialia,20029(9):2199-2207.
[6] Q. DU;D.G. ESKIN;L. KATGERMAN.Modeling Macrosegregation during Direct-Chill Casting of Multicomponent Aluminum Alloys[J].Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science,20071(1):180-189.
[7] Dore X.;Combeau H..MODELLING OF MICROSEGREGATION IN TERNARY ALLOYS: APPLICATION TO THE SOLIDIFICATION OF M-Mg-Si[J].Acta materialia,200015(15):3951-3962.
[8] Q. Du;D.G. Eskin;L. Katgerman.An efficient technique for describing a multi-component open system solidification path[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20083(3):478-484.
[9] Zhao, G.;Li, X.;Xu, D.;Guo, J.;Fu, H.;Du, Y.;He, Y..Numerical computations for temperature, fraction of solid phase and composition couplings in ternary alloy solidification with three different thermodynamic data-acquisition methods[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,2012:155-162.
[10] 赵光伟;徐达鸣;宋梦华;傅恒志;杜勇;贺跃辉.基于微观偏析统一模型及Thermo-Calc的三元合金凝固路径耦合计算[J].金属学报,2009(8):956-963.
[11] 赵光伟 .多元多相合金宏微观凝固传输数值模拟及实验研究[D].哈尔滨工业大学,2011.
[12] Du, Y.;Liu, S.;Zhang, L.;Xu, H.;Zhao, D.;Wang, A.;Zhou, L..An overview on phase equilibria and thermodynamic modeling in multicomponent Al alloys: Focusing on the AlCuFeMgMnNiSiZn system[J].Calphad: Computer Coupling of Phase Diagrams and Thermochemistry,20113(3):427-445.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%