欢迎登录材料期刊网

材料期刊网

高级检索

分别以质量分数为0.1%的氧化石墨烯和石墨烯纳米片为增强相制备了AZ91镁基复合粉和复合材料,分析了氧化石墨烯与AZ91镁合金的界面反应机理;测试了复合材料的力学性能并观察了拉伸断口形貌.结果表明:以氧化石墨烯为增强相复合材料的屈服强度、伸长率和显微硬度分别为224.85 MPa,8.15%和70.14 HV,与基体镁合金的相比分别提高了39.7%,35.4%和31.8%,高于以石墨烯纳米片为增强相复合材料的;氧化石墨烯因带有含氧官能团极易与镁合金粉混合均匀,且两者反应生成的MgO有利于提高石墨烯与镁合金基体的界面结合强度,从而提高复合材料的力学性能.

The AZ9 1 Mg alloy based composite powder and materials were prepared with graphene oxide and graphene nanosheet as strengthening phase respectively and the interface reaction mechanism of graphene oxide with AZ9 1 Mg alloy was analyzed.The mechanical properties of the composites were tested and the tensile fracture surfaces were observed.The results show that the yield strength,elongation and microhardness of the composite with graphene oxide as strengthening phase reached 224.85 MPa,8.15% and 70.14 HV,which were improved by 39.7%,35.4% and 31.8% respectively comparing to those of AZ91 Mg alloy and also much higher than those of the composite with graphene nanosheet as strengthening phase.The graphene oxide was easy to disperse uniformly with the AZ9 1 Mg alloy powder due to its oxygen groups;the interface bonding between graphene and Mg alloy matrix can be strengthened by MgO produced by the reaction between the Mg alloy and the oxygen groups,resulting in the improvement of mechanical properties of the composite.

参考文献

[1] Changgu Lee;Xiaoding Wei;Jeffrey W. Kysar;James Hone.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,20085887(5887):385-388.
[2] Bolotin, KI;Sikes, KJ;Jiang, Z;Klima, M;Fudenberg, G;Hone, J;Kim, P;Stormer, HL.Ultrahigh electron mobility in suspended graphene[J].Solid State Communications,20089/10(9/10):351-355.
[3] Balandin AA;Ghosh S;Bao WZ;Calizo I;Teweldebrhan D;Miao F;Lau CN.Superior thermal conductivity of single-layer graphene[J].Nano letters,20083(3):902-907.
[4] Jingyue Wang;Zhiqiang Li;Genlian Fan.Reinforcement with graphene nanosheets in aluminum matrix composites[J].Scripta materialia,20128(8):594-597.
[5] Lin Jiang;Zhiqiang Li;Genlian Fan.The use of flake powder metallurgy to produce carbon nanotube (CNT)/alummum composites with a homogenous CNT distribution[J].Carbon: An International Journal Sponsored by the American Carbon Society,20125(5):1993-1998.
[6] 燕绍九;杨程;洪起虎;陈军洲;刘大博;戴圣龙.石墨烯增强铝基纳米复合材料的研究[J].材料工程,2014(4):1-6.
[7] Muhammad Rashad;Fusheng Pan;Aitao Tang;Muhammad Asif.Effect of Graphene Nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J].自然科学进展(英文版),2014(2):101-108.
[8] 王筱峻;杨锐;吴昊;陈名海;李清文.碳纳米管增强铝基复合材料研究进展[J].兵器材料科学与工程,2013(6):127-133,134.
[9] Muhammad Rashad;Fusheng Pan;Aitao Tang.Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:111-118.
[10] 付猛;岳艳娟;祝雅娟;陈志刚.水热法制备石墨烯及其表征[J].机械工程材料,2013(6):84-88.
[11] 韩朋;井晓静;沈湘黔;闵春英;潘铁政.氧化石墨烯、短切碳纤维改性聚偏氟乙烯复合膜的摩擦磨损及介电性能[J].机械工程材料,2013(2):53-56,61.
[12] Lee, Kyung Eun;Oh, Jung Jae;Yun, Taeyeong;Kim, Sang Ouk.Liquid crystallinity driven highly aligned large graphene oxide composites[J].Journal of Solid State Chemistry,2015:115-119.
[13] 沈明;张天友;张东.氧化石墨烯剥离方法的研究进展[J].炭素,2009(3):13-18,12.
[14] Liao, K.-H.;Mittal, A.;Bose, S.;Leighton, C.;Mkhoyan, K.A.;MacOsko, C.W..Aqueous only route toward graphene from graphite oxide[J].ACS nano,20112(2):1253-1258.
[15] Zhang, Y.;Pan, C..TiO2/graphene composite from thermal reaction of graphene oxide and its photocatalytic activity in visible light[J].Journal of Materials Science,20118(8):2622-2626.
[16] 任小孟;王源升;何特.石墨烯热还原程度对其电化学性能的影响[J].电子元件与材料,2013(1):5-9,13.
[17] Sheng-Yi Xie;Xian-Bin Li;Y.Y. Sun.Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals[J].Carbon: An International Journal Sponsored by the American Carbon Society,2013:122-127.
[18] 李陇岗;杨建元;钟辉;杨争.Mg(OH)2热分解动力学机理研究[J].盐湖研究,2006(1):39-42.
[19] F.C.Gennari;G.Urretavizcaya.Mechancal Alloying of Mg-Ge Based Mixtures Under Hydrogen and Agron Atmospheres[J].Latin American Applied Research,20024(4):275-280.
[20] Ganesh VV;Chawla N.Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and micro structure-based simulation[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):342-353.
[21] Z. Zhang;D. L. Chen.Consideration of Orowan Strengthening Effect in Particulate-Reinforced Metal Matrix Nanocomposites: A Model for Predicting their Yield Strength[J].Scripta materialia,20067(7):1321-1326.
[22] Srinivasa R. Bakshi;Arvind Agarwal.An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J].Carbon: An International Journal Sponsored by the American Carbon Society,20112(2):533-544.
[23] 徐强;曾效舒;徐耀勇;袁秋红.包覆镍CNTs/AM60复合材料铸态显微组织与力学性能[J].机械工程材料,2009(10):53-56,89.
[24] Kondoh, K.;Fukuda, H.;Umeda, J.;Imai, H.;Fugetsu, B.;Endo, M..Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,201016/17(16/17):4103-4108.
[25] 王雪静;陈得军;周建国.碳纳米管/氧化镁纳米复合材料的制备和表征[J].化工新型材料,2009(2):35-36,91.
[26] Goh CS;Gupta M;Wei J;Lee LC.Characterization of high performance Mg/MgO nanocomposites[J].Journal of Composite Materials,200719(19):2325-2335.
[27] Z. Fan;Y. Wang;M. Xia.Enhanced heterogeneous nucleation in AZ91D alloy by intensive melt shearing[J].Acta materialia,200916(16):4891-4901.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%