欢迎登录材料期刊网

材料期刊网

高级检索

采用热膨胀仪研究了耐硫化氢腐蚀X80管线钢在连续冷却过程中的相变行为,绘制了其连续冷却转变曲线(CCT曲线);并且利用热模拟试验机对其轧制工艺进行模拟,研究了变形温度、冷却速率和卷取温度对试验钢组织和硬度的影响,得到了较优化的轧制工艺;最后测试了在优化轧制工艺参数下轧制试验钢的力学性能和抗氢致开裂性能.结果表明:试验钢的相变温度主要发生在450~780℃之间;随着冷却速率增加,相变开始温度下降,并且当冷速为1.76~8.8℃.s-1时可以得到以针状铁素体为主的组织;最佳的轧制工艺参数为变形温度(830±15)℃、冷却速率15℃.s-1、卷取温度为(400±15)℃;在此工艺参数下轧制得到的试验钢具有优良的抗氢致开裂性能,并可以满足API5L标准对X80管线钢强度级别的要求.

Thermal expansion instrument was used to study the phase transition behaviors of hydrogen sulfide corrosion resistant X80 pipeline steel during continuous cooling and continuous cooling transformation (CCT)curves were drawn.Moreover,simulation test for its rolling process was also carried out using thermal simulation test machine.And the effects of deformation temperature,cooling rate and coiling temperature on microstructure and hardness of tested steel were analyzed,and the optimized rolling process parameters were obtained.At last,for the tested steel rolled at optimized rolling process parameters,its mechanical properties and hydrogen induced cracking (HIC)resistance were tested.The results demonstrat that phase change temperature of the tested steel mainly occurred between 450 ℃ and 780 ℃.With the increase of cooling rate, the phase transformation starting temperature was overall declined.In addition,the microstructure was mainly acicular ferrite when the cooling rate was between 1.76 ℃.s-1 and 8.8 ℃.s-1 .The optimum rolling process parameters was determined as phase transition temperature,cooling rate and coiling temperature of (830±15)℃,15 ℃.s-1 and (400±15)℃, respectively.The tested steel rolled at the above rolling process parameters had good HIC resistance,and it can meet strength demands of API5L on X80 pipeline steel.

参考文献

[1] 张治国;吴明;程浩力;卢贵芳;龙世华;王运涛;王新事.X80级管线钢的发展及腐蚀实验研究概况[J].当代化工,2011(2):206-208.
[2] 张斌;钱成文;王玉梅;张玉志.国内外高钢级管线钢的发展及应用[J].石油工程建设,2012(1):1-4,64.
[3] 范跃华;樊新民;魏伟;单以银;杨柯.高强度管线钢连续冷却转变研究[J].材料热处理学报,2008(3):62-65.
[4] 彭海红;陈晔;李国宝;栾玉武.X60管线钢再结晶和过冷奥氏体连续冷却相变行为的研究[J].钢铁钒钛,2006(4):34-37.
[5] 左碧强;王岩;米振莉;赵爱民.管线钢X80的CCT曲线研究[J].热加工工艺,2010(4):12-14.
[6] 彭海红;栾玉武;黄伟;侯登义.X65管线钢连续冷却相变行为的研究[J].宽厚板,2007(1):36-38.
[7] C.F. Dong;X.G. Li;Z.Y. Liu.Hydrogen-induced cracking and healing behaviour of X70 steel[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,20091/2(1/2):966-972.
[8] Ming-Chun Zhao;Yi-Ying Shan;Fu Ren Xiao.Investigation on the H_2S-resistant behaviors of acicular ferrite and ultrafine ferrite[J].Materials Letters,20021(1):141-145.
[9] J.M.GREGG;H.D.H.BHADESHIA.SOLID-STATE NUCLEATION OF ACICULAR FERRITE ON MINERALS ADDED TO MOLTEN STEEL[J].Acta materialia,19972(2):739-748.
[10] Kim YM;Lee H;Kim NJ.Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20081/2(1/2):361-370.
[11] Zhenghua Tang;Waldo Stumpf.The role of molybdenum additions and prior deformation on acicular ferrite formation in microalloyed Nb-Ti low-carbon line-pipe steels[J].Materials Characterization,20086(6):717-728.
[12] 肖福仁 .针状铁素体管线钢的组织控制与细化工艺研究[D].燕山大学,2003.
[13] 顾宝兰;徐学东;周莉.管线用钢显微组织对氢致裂纹影响的研究[J].理化检验-物理分册,2006(1):8-11.
[14] B. Beidokhti;A. Dolati;A.H. Koukabi.Effects of alloying elements and microstructure on the susceptibilityof the welded HSLA steel to hydrogen-induced cracking and sulfide stress cracking[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20091/2(1/2):167-173.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%