欢迎登录材料期刊网

材料期刊网

高级检索

以添加有纳米 TiN 颗粒的氨基磺酸盐镀液为基础镀液,采用超声-脉冲电沉积的方法在45钢表面制备了纳米 TiN/Ni 复合镀层,分析了电流密度对其微观形貌、显微硬度以及表面TiN 含量及分布的影响。结果表明:当电流密度在2~5 A??dm-2时,复合镀层结构致密且厚度均匀,其厚度随电流密度的增大而增加;随着电流密度的增大,复合镀层表面晶粒先细化后长大,显微硬度先提高后降低,当电流密度为4 A??dm-2时,镀层表面平整,表面和截面硬度均达到最大,分别为677,763 HV;复合镀层表面 TiN 的含量随电流密度的增大先增加后减少,当电流密度为4 A??dm-2时,其含量最高且分散均匀。

With the sulfamate bath containing TiN nanoparticles as the basic bath, the nano-TiN/Ni composite coatings were deposited on 45 steel surface by ultrasonic-pulse electrodeposition method.The effects of current densities on the morphology and microhardness of the composite coatings and on the TiN content and distribution at the surface were analyzed.The results show that when the current density changed between 2 A?dm-2 and 5 A?dm-2 ,the microstructures of the composite coatings were compact and the thicknesses were uniform,and the thickness increased with the increasing current density.With the increase of the current density, the surface grains in the composite coatings first refined then enlarged,and the microhardness first improved then decreased.When the current density was 4 A?dm-2 ,the surface of the composite coating was plain and the surface and cross-section microhardness reached the largest value of 677 HV and 763 HV respectively.The TiN content in the surface of the composite coating first increased then decreased with the increase of the current density,and achieved the highest value and a relatively uniform distribution at the current density of 4 A?dm-2 .

参考文献

[1] Adolphe Foyet;Anton Hauser;Wieland Schafer.Template electrochemical deposition and characterization of zinc–nickel alloy nanomaterial[J].Journal of Electroanalytical Chemistry: An International Journal Devoted to All Aspects of Electrode Kinetics, Interfacial Structure, Properties of Electrolytes, Colloid and Biological Electrochemistry,20072(2):137-143.
[2] Xia, FF;Wu, MH;Wang, F;Jia, ZY;Wang, AL.Nanocomposite Ni-TiN coatings prepared by ultrasonic electrodeposition[J].Current applied physics: the official journal of the Korean Physical Society,20091(1):44-47.
[3] 王红美;徐滨士;马世宁;董世运.纳米Al2O3颗粒增强镍基复合镀层的制备及微观力学性能[J].材料热处理学报,2005(1):81-85.
[4] 徐滨士;谭俊;陈建敏.表面工程领域科学技术发展[J].中国表面工程,2011(2):1-12.
[5] 刘世亮 .高频脉冲电镀镍层的制备及其性能的研究[D].北京交通大学,2012.
[6] 童修强.氨基磺酸镍镀层低应力的理论分析[J].电镀与精饰,1989(04):3.
[7] 许伟长;林芬;陈颖;伍文杰;戴品强.氨基磺酸镍体系电沉积纳米镍的力学性能及热稳定性研究[J].福州大学学报(自然科学版),2008(3):387-392.
[8] Molloy, D.A.;Malinov, S.;McNally, T.;Hill, P..Thermal study of selectively plated nickel sulfamate coatings[J].Progress in Organic Coatings: An International Review Journal,20114(4):330-335.
[9] 刘兰波;吴蒙华;王元刚;贾卫平.超声-脉冲电铸工艺参数对镍铸层晶粒尺寸的影响[J].机械工程材料,2012(03):22-25.
[10] 夏法锋;吴蒙华;贾振元;李智.纳米TiN粒子在Ni-TiN复合镀层中的作用研究[J].金属热处理,2007(3):62-64.
[11] 冶银平;周惠娣;陈建敏.电刷镀镍/炭纳米管复合纳米镀层的结构与耐磨性能[J].稀有金属材料与工程,2006(10):1643-1646.
[12] 袁诗璞.第四讲--电极与极化的概念(二)[J].电镀与涂饰,2008(10):39-40.
[13] 王宏 .纳米Al2O3颗粒增强电沉积镍抗蠕变性能研究[D].哈尔滨工业大学,2013.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%