基于 AZ31镁合金热压缩真应力-真应变曲线,计算得到了流变应力方程,分析了合金压缩变形后的显微组织,并用 HyperXtrude 有限元分析软件对 AZ31镁合金方管挤压成型进行了数值模拟,最后进行了试验验证。结果表明:AZ31镁合金的流变应力随变形温度的升高而减小,并在350℃以上较快达到稳态,易于加工成型;热压缩变形后合金中的孪晶组织随温度的升高有所减少,且晶粒不断长大,在高应变速率时由于动态再结晶不充分,晶界附近形成类似“项链”状的细小晶粒组织;有限元模拟分析发现方管角部金属流速低于中心位置,在 HyperStudy 中经工作带优化后流速分布均匀,采用优化设计的模具挤压生产出了合格的 AZ31镁合金型材。
On the basis of true flow stress-true strain curves of AZ31 magnesium alloys obtained from hot compression process, the corresponding flow stress equation was presented and the microstructure of the compressed alloy was analyzed.The square tube extrusion process for AZ31 magnesium alloy was simulated by using the HyperXtrude software.The results show that the flow stress decreased with the increasing temperature and could reach the steady state quickly above 350 ℃,which is suitable for processing forming.The twins in hot compression specimens reduced with the temperature increasing,moreover the grains were growing up.With the high strain rate,the fine grains similar to “necklace”appeared on the grain boundaries due to the insufficiency of dynamic recrystallization.The finite element simulation results show that the metal velocity in the corner of the square tube was lower than that in the center,but could distribute well as the optimization of the bearing part in the HyperStudy.The die designed on the optimized die bearing model proved to be capable of producing the qualified products in practice.
参考文献
[1] | 罗昊.AZ31镁合金挤压板材的力学性能和耐腐蚀性能[J].机械工程材料,2013(10):60-63. |
[2] | 郜瑞,温彤,季筱玮,张杰.工艺参数对AZ31镁合金板拉深成形性能的影响[J].机械工程材料,2013(03):87-89,94. |
[3] | CHEN H;ZHAO G Q;ZHANG C S et al.Numerical simulation of extrusion process and die structure optimization for a complex aluminum multicavity wallboard of high-speed train[J].Materials and Manufacturing Processes,2011,26(12):1530-1538. |
[4] | ZHANG C S;ZHAO G Q;CHEN Z R et al.Effect of extrusion stem speed on extrusion process for a hollow aluminum profile[J].Materials Science and Engineering:B,2012,177(19):1691-1697. |
[5] | GUAN Y J;ZHANG C S;ZHAO G Q et al.Design of a multihole porthole die for aluminum tube extrusion[J].Materials and Manufacturing Processes,2012,27(2):147-153. |
[6] | ZHANG C S;ZHAO G Q;CHEN H et al.Numerical simulation and metal flow analysis of hot extrusion process for a complex hollow aluminum profile[J].The International Journal of Advanced Manufacturing Technology,2012,60(1):101-110. |
[7] | 易杰,朱必武,李落星.铝合金车门内板挤压铸造工艺优化的有限元模拟[J].机械工程材料,2014(05):89-94. |
[8] | 王冠,何芯,李落星,姚再起.6063铝合金挤压型材尺寸超差分析及模具优化设计[J].机械工程材料,2013(07):85-89. |
[9] | 王春艳,谢兰生,陈国亮.超薄TB8钛合金半球成形工艺的有限元模拟[J].机械工程材料,2012(11):102-105,112. |
[10] | 李光振;孙颖迪;陈秋荣 等.基于 HyperXtrude 的镁型材挤压数值模拟与模具优化研究[J].热加工工艺,2014,43(13):118-120. |
[11] | 黄光杰,赵国丹.AZ31镁合金热变形规律的研究[J].重庆工学院学报,2006(02):60-64. |
[12] | 孙述利,张敏刚,周俊琪,何文武,刘晓峰,孙刚,柴跃生.AZ31镁合金在热压缩过程中的变形行为[J].机械工程材料,2010(08):88-90. |
[13] | 孙朝阳,栾京东,刘赓,李瑞,张清东.AZ31镁合金热变形流动应力预测模型[J].金属学报,2012(07):853-860. |
[14] | 余琨,史禔,王日初,黎文献,王晓艳,蔡志勇.AZ31镁合金变形行为的热/力模拟[J].中南大学学报(自然科学版),2008(02):216-220. |
[15] | JONAS J J;SELLARS C M;TEGART W J .Strength and structure under hot-working conditions[J].International Materials Reviews,1969,14(1):1-24. |
[16] | 王火生,傅高升,陈永禄,陈文哲.铝锰镁合金热压缩变形的流变应力曲线与本构方程[J].机械工程材料,2014(05):95-98,103. |
- 下载量()
- 访问量()
- 您的评分:
-
10%
-
20%
-
30%
-
40%
-
50%