欢迎登录材料期刊网

材料期刊网

高级检索

采用高能球磨法制备了多壁碳纳米管与铜粉(MWCNTs/Cu)的复合粉体,随后用真空热压烧结制备了 MWCNTs/Cu 复合材料,研究了球磨搅拌轴线速度对 MWCNTs/Cu 复合粉晶粒尺寸、粉体形貌及对 MWCNTs/Cu 复合材料力学性能的影响.结果表明:随着搅拌轴线速度的增大,铜的晶粒尺寸明显减小,搅拌轴线速度为4.2/4.8 m.s-1时,其晶粒尺寸趋于稳定,为23 nm;MWCNTs/Cu 复合材料的抗拉强度和硬度先增大后减小,当搅拌轴线速度为4.2/4.8 m.s-1时,抗拉强度和硬度达到最大,分别为187.21 MPa 和166 HV;球磨后铜粉形貌由球状变为片状, MWCNTs 嵌入铜基体内,当受到外界载荷时 MWCNTs 起到承担载荷的作用,从而提高了复合材料的力学性能.

The multi-walled carbon nanotubes and copper powders (MWCNTs/Cu)composite powders were prepared by high energy milling (HEM),then hot-press sintered to obtain MWCNTs/Cu composite material.The effects of various rotational linear speeds on the grain size and morphology of composite powders and the mechanical property of MWCNTs/Cu composite material were studied.The results show that the grain size of copper powder decreased with rotational speed increasing.At the rotational speed of 4.2/4.8 m.s-1 ,the average grain size of copper powder reached 23 nm.The tensile strength and microhardness of composite material first increased then decreased with the increase of rotational speed and reached maximum value at speed of 4.2/4.8 m.s-1 ,which was 187.21 MPa and 1 66 HV respectively.The shape of copper powder changed from spherical to lamella after milling,and MWCNTs was embedded in copper matrix and undertook the applied loads,therefore improved the mechanical property of composite material.

参考文献

[1] XUE Z W;WANG L D;ZHAO P T et al.Microstructures and tensile behavior of carbon nanotubes reinforced Cu matrix composites with molecular-level dispersion[J].Materials &Design,2012,34:298-301.
[2] JENEI P;GUBICZA J;YOON E et al.High temperature thermal stability of pure copper and copper-carbon nanotube composites consolidated by high pressure torsion[J].Composites Part A:Applied Science and Manufacturing,2013,5 1:71-79.
[3] DONG H N;SEUNG I C;BYUNG K L et al.Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al-Cu composites[J].Carbon,2012,50(7):2417-2423.
[4] Lijie Ci;Zhenyu Ryu;Neng Yun Jin-Phillipp .Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum[J].Acta materialia,2006(20):5367-5375.
[5] UDDIN S M;MAHMUD T;WOLF C et al.Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites[J].Composites Science and Technology,2010,70(16):2253-2257.
[6] KIM K T;ECKERT J;LIU G .Influence of embedded-carbon nanotubes on the thermal properties of copper matrix nanocomposites processed by molecular-level mixing[J].Scripta Materialia,2011,64(2):181-184.
[7] GEORGE R;KASHYAP K;RAHUL R et al.Strengthening in carbon nanotube/aluminium(CNT/Al)composites[J].Scripta Materialia,2005,53(10):1159-1163.
[8] 孙永伟,刘勇,田保红,冯江.真空热压烧结制备20vol%SiC/Cu-Al2O3复合材料[J].热加工工艺,2011(12):77-78,80.
[9] 郭明星,汪明朴,李周,曹玲飞,程建奕.原位复合法制备纳米粒子弥散强化铜合金研究进展[J].机械工程材料,2005(04):1-3.
[10] 王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1996:11.
[11] 陆德平,孙宝德,曾卫军,刘勇,张友亮,谢仕芳.铜基高强高导电材料的研究进展[J].机械工程材料,2004(09):1-4.
[12] 湛永钟,张国定,蔡宏伟.高导电耐磨铜基复合材料的研究[J].机械工程材料,2003(11):18-21.
[13] LI Q Q;ROTTMAIR C A;SINGER R F .CNT reinforced light metal composites produced by melt stirring and by high pressure die casting[J].Composites Science and Technology,2010,70(16):2242-2247.
[14] KWON H;ESTILI M;TAKAGI K et al.Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J].Carbon,2009,47:570-577.
[15] SURYANARAYANA C .Mechanical alloying and milling[J].Prog Mater Sci,2001,46:181-184.
[16] 陈站,张晋敏,赵青壮,朱培强,郑旭,谢泉.高能球磨法制备Fe3Si合金粉末[J].材料导报,2012(08):39-43,46.
[17] MAGINI M;IASONNA A .Energy transfer in mechanical alloying[J].Materials Transactions JIM,1995,36(2):123-133.
[18] 孟慧娟 .机械合金化法制备Mg-Cu非晶合金及其结构性能表征[D].天津大学,2008.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%