欢迎登录材料期刊网

材料期刊网

高级检索

为了研究水基钻井液用碳酸钙微米颗粒在水溶液中的分散状况,使用扫描电镜对碳酸钙微米颗粒的微观形貌进行了分析,而后在不同搅拌速度、不同pH、不同超声时间等物理分散因素下研究了碳酸钙微米颗粒在水溶液中的粒径分布与Zeta电位变化,又利用不同的分散剂对碳酸钙微米颗粒进行了化学分散.结果表明:长期放置的碳酸钙微米颗粒会发生团聚,中径达6~7μm;采用物理方法分散时,搅拌速度越高,分散效果越好,在10000 r/min时可使中径达3~4μm;超声作用则使碳酸钙微米颗粒粒径先减小后增大,中径最小可达2.6μm,pH小于10时,粒径随pH的增大而增大,大于10时则随pH的增大而减小;化学分散剂对提高碳酸钙微米颗粒的分散具有显著的作用,其中,无机类分散剂六偏磷酸钠可使碳酸钙微米粒子中径达到1.5μm,并且Zeta电位绝对值显著提高.

To study water?based drilling fluids with calcium carbonate microparticles in aqueous dispersion conditions, the micro morphology of calcium carbonate microparticles was analyzed by scanning electron microscope ( SEM) . Then, the paper studied the particle size distribution of calcium carbonate microparticles in water solution and the variation of Zeta potential were studied based on researches on several physical dispersion factors, including different stirring rate, different pH, and different ultrasonic time. Finally, chemical decomposition for calcium carbonate microparticles with various dispersants were carried out. Experimental results show that placement of microparticles calcium carbonate material for a long time will reunite and its diameter reaches 6~7 μm. Using physical dispersion, the higher the stirring speed, the better the dispersion effects. When stirring speed is 10 000 r/min, the diameter can reach 3~4 μm. Ultrasound causes the particle size of calcium decreasing first and then increasing. The minimum medium diameter is 2.6μm. When the value of pH is less than the number 10, particle size increases with the increase of pH. When the value of pH is more than number 10, particle size decreases with the increasing of pH value. Chemical dispersants play an important role in improving the dispersion of calcium carbonate microparticles. The inorganic dispersant, sodium hexametaphosphate ( SHMP ) can make diameters of calcium carbonate nanoparticles reach 1.5 μm andincrease the absolute value of the Zeta potential remarkably.

参考文献

[1] 邹才能;董大忠;王玉满;李新景;黄金亮;王淑芳;管全中;张晨晨;王红岩.中国页岩气特征、挑战及前景(一)[J].石油勘探与开发,2015(6):689-701.
[2] J. Cai;M.E. Chenevert;M.M. Sharma;Jim Friedheim.Decreasing Water Invasion Into Atoka Shale Using Nonmodified Silica Nanoparticles[J].SPE Drilling & Completion,20121(1):103-112.
[3] 白小东;肖丁元;张婷;唐斌.纳米碳酸钙改性分散及其在钻井液中的应用研究[J].材料科学与工艺,2015(1):89-94.
[4] 王辉;王富华.纳米技术在钻井液中的应用探讨[J].钻井液与完井液,2005(2):50-53.
[5] 梁文玉 .纳米CaCO<,3>在水中的分散及其机理研究[D].江南大学,2008.
[6] 高党鸽;段羲颖;吕斌;马建中.纳米SiO2稳定Pickering乳液的研究进展[J].印染,2015(4):50-54.
[7] 黄玉强;张彦奇;华幼卿.LLDPE/纳米SiO2复合材料的制备与性能研究[J].中国塑料,2003(1):25-29.
[8] Mizutani Yukio;Nago Satoshi.Microporous polypropylene films containing ultrafine silica particles[J].Journal of Applied Polymer Science,199911(11):1489-1494.
[9] Min Zhi Rong;Ming Qin Zhang;Yong Xiang Zheng;Han Min Zeng;K.Friedrich.Improvement of tensile properties of nano-SiO_2/PP composites in relation to percolation mechanism[J].Polymer: The International Journal for the Science and Technology of Polymers,20017(7):3301-3304.
[10] 张丽.分散、解聚纳米碳酸钙粉体的高效节能粉磨技术[J].中国粉体技术,2014(02):35-38.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%