欢迎登录材料期刊网

材料期刊网

高级检索

纳米材料发展的关键是纳米结构的制备、形貌调控和性能优化。倾斜角度沉积是以较大的角度(大于75°)倾斜入射沉积薄膜,通过控制沉积参数,得到具有特殊形貌纳米结构的方法,具有适用范围广,操作便捷,制备的薄膜面积大、纯度高、结构规整等特点,是一种理想的制备纳米材料的方法。本文介绍了采用倾斜角度沉积技术制备氧化铪抗反射薄膜和银基表面增强拉曼基底,详细分析了该方法的参数调控对纳米结构的形貌和性能的影响,并指出将倾斜角度沉积与其他先进技术相结合(以原子层沉积为例),可进一步优化纳米结构的性能,提高倾斜角度沉积的使用范围。

Due to the special structures, nanomaterials possess many unique physical and chemical properties compared with their bulk states. The key points of developing nanomaterials are the fabrication, morphological modulation and property optimization of nanostructures. Glancing angle deposition ( GLAD) is an effective way to fabricate nanostructures with specific morphologies by preparing nano?films at large deposition angles (>75 °) and controllably adjusting the deposition parameters. The GLAD technique could conveniently fabricate nanostructures with high purity and aligned arrangement in a large scale, which is an ideal method to prepare nanomaterials for various applications.By introducing the successful preparation of hafnia antireflection films and silver?basedsurface?enhanced Raman scattering ( SERS) substrates fabricated via GLAD method, the relationship between the deposition parameters and the specific morphologies as well as properties of nanostructureswere investigated in detail. Meanwhile, efforts have been directed to combine GLAD with other advanced methods (e.g., atomic layer deposition) so as to further improve the properties of nanostructures and broad the employment of GLAD.It is believed that the GLAD technique is an efficient and viable way in the fabrication of nanostructures, which has wide potential applications.

参考文献

[1] S. Vijayalakshmy;B. Subramanian.Enhanced performance of dye-sensitized solar cells with TiO_2 blocking layers and Pt counter electrodes prepared by physical vapor deposition (PVD)[J].Electrochimica Acta,2014:334-342.
[2] 王娜;贺毅强.金属基粉末制备技术的研究进展及发展趋势[J].热加工工艺,2013(4):86-88,92.
[3] Ashuri, H.;Hassani, A..Characterization of severely deformed new composites fabricated by powder metallurgy including a stage of mechanical alloying[J].Journal of Alloys and Compounds: An Interdisciplinary Journal of Materials Science and Solid-state Chemistry and Physics,2014:444-454.
[4] Zhu, Zonglong;Bai, Yang;Zhang, Teng;Liu, Zhike;Long, Xia;Wei, Zhanhua;Wang, Zilong;Zhang, Lixia;Wang, Jiannong;Yan, Feng;Yang, Shihe.High-Performance Hole-Extraction Layer of Sol-Gel-Processed NiO Nanocrystals for Inverted Planar Perovskite Solar Cells[J].Angewandte Chemie,201446(46):12571-12575.
[5] Ying Wang;Jiaguo Yu;Wei Xiao.Microwave-assisted hydrothermal synthesis of graphene based Au-TiO2 photocatalysts for efficient visible-light hydrogen production[J].Journal of Materials Chemistry, A. Materials for energy and sustainability,201411(11):3847-3855.
[6] Qin Zhou;Xian Zhang;Yu Huang;Zhengcao Li;Yiping Zhao;Zhengjun Zhang.Enhanced surface-enhanced Raman scattering performance by folding silver nanorods[J].Applied physics letters,201211(11):113101-1-113101-3.
[7] D. Vick;Y. Y. Tsui;M. J. Brett;R. Fedosejevs.Production of porous carbon thin films by pulsed laser deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,19991/2(1/2):49-52.
[8] Abelmann L.;Lodder C..OBLIQUE EVAPORATION AND SURFACE DIFFUSION [Review][J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,19971/2(1/2):1-21.
[9] D. Vick;L. J. Friedrich;S. K. Dew;M. J. Brett;K. Robbie;M. Seto;T. Smy.Self-shadowing and surface diffusion effects in obliquely deposited thin films[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,19991/2(1/2):88-94.
[10] Zhou Q;Li ZC;Yang Y;Zhang ZJ.Arrays of aligned, single crystalline silver nanorods for trace amount detection[J].Journal of Physics, D. Applied Physics: A Europhysics Journal,200815(15):152007-1-152007-4-0.
[11] D-X Ye;T Karabacak;R C Picu.Uniform Si nanostructures grown by oblique angle deposition with substrate swing rotation[J].Nanotechnology,20059(9):1717-1723.
[12] C. M. Zhou;D. Gall.Branched Ta nanocolumns grown by glancing angle deposition[J].Applied physics letters,200620(20):203117.1-203117.3.
[13] Kesapragada SV;Gall D.Two-component nanopillar arrays grown by Glancing Angle Deposition[J].Thin Solid Films: An International Journal on the Science and Technology of Thin and Thick Films,20061/2(1/2):234-239.
[14] Qin Zhou;Zhengcao Li;Jie Ni.A Simple Model-Describe the Rule of Glancing Angle Deposition[J].Materials transactions,20113(3):469-473.
[15] M O Jensen;M J Brett.Embedded air and solid defects in periodically structured porous thin films[J].Nanotechnology,200511(11):2639-2646.
[16] Jung Woo Leem;Jae Su Yu;Jonggon Heo;Won-Kyu Park;Jin-Hong Park;Woo Jin Cho;Do Eok Kim.Nanostructured encapsulation coverglasses with wide-angle broadband antireflection and self-cleaning properties for III-V multi-junction solar cell applications[J].Solar Energy Materials and Solar Cells: An International Journal Devoted to Photovoltaic, Photothermal, and Photochemical Solar Energy Conversion,2014Pt.B(Pt.B):555-560.
[17] Jie Ni;Yu Zhu;Sihong Wang.Nanostructuring HfO_2 Thin Films as Anti reflection Coatings[J].Journal of the American Ceramic Society,200912(12):3077-3080.
[18] Khoshman JM;Kordesch ME.Optical properties of a-HfO2 thin films[J].Surface & Coatings Technology,20066(6):3530-3535.
[19] Ni Jie;Zhu Yu;Zhou Qin.Morphology in-Design Deposition of HfO_2 Thin Films[J].Journal of the American Ceramic Society,200810(10):3458-3460.
[20] Rajinder Singh.C. V. Raman and the Discovery of the Raman Effect[J].Physics in perspective,20024(4):399-420.
[21] Sebastian Schlucker.Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications[J].Angewandte Chemie,201419(19):4756-4795.
[22] Da-Wei Li;Wen-Lei Zhai;Yuan-Ting Li.Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants[J].Mikrochimica Acta: An International Journal for Physical and Chemical Methods of Analysis,20141/2(1/2):23-43.
[23] Alan Campion;Patanjali Kambhampati.Surface-enhanced Raman scattering[J].Chemical Society Reviews,19984(4):241-250.
[24] K. Lance Kelly;Eduardo Coronado;Lin Lin Zhao;George C. Schatz.The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment[J].The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical,20033(3):668-677.
[25] Zhang XY;Hicks EM;Zhao J;Schatz GC;Van Duyne RP.Electrochemical tuning of silver nanoparticles fabricated by nanosphere lithography[J].Nano letters,20057(7):1503-1507.
[26] Laurent G;Felidj N;Grand J;Aubard J;Levi G;Hohenau A;Aussenegg FR;Krenn JR.Raman scattering images and spectra of gold ring arrays[J].Physical review, B. Condensed matter and materials physics,200624(24):5417-1-5417-5-0.
[27] M. Fernanda Cardinal;Benito Rodriguez-Gonzalez;Ramon A. Alvarez-Puebja.Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201023(23):10417-10423.
[28] Ruibin Jiang;Huanjun Chen;Lei Shao;Qian Li;Jianfang Wang.Unraveling the Evolution and Nature of the Plasmons in (Au Core)-(Ag Shell) Nanorods[J].Advanced Materials,201235(35):200-207.
[29] Y.-J. Liu;Hsiao Yun Chu;Y.-P. Zhao.Silver Nanorod Array Substrates Fabricated by Oblique Angle Deposition: Morphological, Optical, and SERS Characterizations[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201018(18):8176-8183.
[30] Qin Zhou;Yuping He;Justin Abell.Optical Properties and Surface Enhanced Raman Scattering of L-Shaped Silver Nanorod Arrays[J].The journal of physical chemistry, C. Nanomaterials and interfaces,201129(29):14131-14140.
[31] Zhou, Q.;He, Y.;Abell, J.;Zhang, Z.;Zhao, Y..Surface-enhanced Raman scattering from helical silver nanorod arrays[J].Chemical communications,201115(15):4466-4468.
[32] Qin Zhou;Yongjun Liu;Yuping He;Zhengjun Zhang;Yiping Zhao.The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates[J].Applied physics letters,201012(12):121902-1-121902-3.
[33] Zhou, Q;Yang, Y;Ni, J;Li, ZC;Zhang, ZJ.Rapid detection of 2, 3, 3 ', 4, 4 '-pentachlorinated biphenyls by silver nanorods-enhanced Raman spectroscopy[J].Physica, E. Low-dimensional systems & nanostructures,20105(5):1717-1720.
[34] Zhou, Q.;Yang, Y.;Ni, J.;Li, Z.;Zhang, Z..Rapid recognition of isomers of monochlorobiphenyls at trace levels by surface-enhanced Raman scattering using Ag nanorods as a substrate[J].Nano Research,20106(6):423-428.
[35] HANI ALARIFI;ANMING HU;MUSTAFA YAVUZ;Y. NORMAN ZHOU.Silver Nanoparticle Paste for Low-Temperature Bonding of Copper[J].Journal of Electronic Materials,20116(6):1394-1402.
[36] Q. Jiang;S.H. Zhang;J.C. Li.Grain size-dependent diffusion activation energy in nanomaterials[J].Solid State Communications,20049(9):581-584.
[37] John, JF;Mahurin, S;Dai, S;Sepaniak, MJ.Use of atomic layer deposition to improve the stability of silver substrates for in situ, high temperature SERS measurements[J].Journal of Raman Spectroscopy: An International Journal for Original Work in All Aspects of Raman Spectroscopy, Including Higher Order Processes, and Also Brillouin- and Rayleigh Scattering,20101(1):4-11.
[38] Im, H.;Lindquist, N.C.;Lesuffleur, A.;Oh, S.-H..Atomic layer deposition of dielectric overlayers for enhancing the optical properties and chemical stability of plasmonic nanoholes[J].ACS nano,20102(2):947-954.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%