欢迎登录材料期刊网

材料期刊网

高级检索

以真空非自耗电弧炉制备的低成本Ti-6Al-2.5V-1.5Fe-0.15O合金为对象,研究了不同冷却速率下固溶及时效温度对合金组织及性能的影响,发现固溶温度主要影响初生α相的含量.固溶冷却方式影响α的类型.单相区固溶时,初生α相消失,β晶粒内出现α片层集束,固溶淬火组织主要由残余未转变的β相以及针状的α′;随着固溶温度的升高,针状马氏体α′相增多;两相区固溶后,时效组织均有固溶时产生的α相、时效α相以及残留的β相.时效温度较低时,α相形核能较低,元素扩散困难,需借助过饱和β相析出弥散相形核,因而针状α相细小而弥散;时效温度升高,α相形核以及长大驱动力大,时效α相易长大变粗.经固溶时效处理,合金强度随着温度升高先小幅升高后显著降低,塑性先增大后因晶界粗化以及粗片状α集束而降低.

The effect of solid solution temperature and aging temperature in different cooling rates on microstructure and mechanical properties of Ti-6Al-2.5V-1.5Fe-0.15O alloy prepared by vacuum non-consumable arc melting process was studied. It was found that solid solution temperature mainly affects the content of primaryα, and the type of solid solution cooling method has important effect on the type of primaryα. Aging temperature will change the morphology of agingαphase. When the single phase zone is in solid solution, primaryαphase disappears. The structure of the alloy after solid solution quenching is mainly composed of the residual phase and the needle like α′. With the increase of solid solution temperature, the needle likeα′increases. After solid solution in the two phase region,αphase, agingαphase and residualβphase all exist. At lower aging temperature, nuclear power and element diffusionαphase is lower. By means of saturatedβphase precipitated nucleation, acicularαphase is fine and dispersive. With increase of aging temperature, nucleation energy ofαphase is larger. Aging phase is easy to grow up. After solution-aging treatment, the strength of the alloy increases slightly firstly and then decreases with increase of temperature. Plasticity firstly increases and then decreases due to grain boundary coarsening and coarse lamellarαcluster.

参考文献

[1] Junchao Li?;Yanyan Zang;Wei Wang.Elastic Modulus and Stress Analysis of Porous Titanium Parts Fabricated by Selective Laser Melting[J].哈尔滨工业大学学报(英文版),2016(2):46-50.
[2] 朱知寿.我国航空用钛合金技术研究现状及发展[J].航空材料学报,2014(4):44-50.
[3] Qiang Cao;Qingdong Zhang;Xiaofeng Zhang.Anisotropy of Mechanical Behavior in Commercially Pure Titanium Sheets[J].哈尔滨工业大学学报(英文版),2015(01):63-67.
[4] 赵永庆;魏建峰;高占军;李月璐;吴欢;刘彩利;冯亮;常辉.钛合金的应用和低成本制造技术[J].材料导报,2003(4):5-7.
[5] 刘志光.航空航天钛合金用中间合金--钒铝65合金[J].钛工业进展,2014(01):12-14.
[6] 曾立英;葛鹏.弹簧用高强钛合金的研究进展[J].钛工业进展,2009(5):5-9.
[7] 赵永庆;李月璐;吴欢;冯亮;朱康英;刘彩利.低成本钛合金研究[J].稀有金属,2004(1):66-69.
[8] 辛社伟;赵永庆.钛合金固态相变的归纳与讨论(Ⅳ)--钛合金热处理的归类[J].钛工业进展,2009(3):26-29.
[9] Mora L.;Quesne C..Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: #beta#-CEZ: Part II. Relationships between thermomechanical treatments and tensile properties[J].Journal of Materials Research,19961(1):89-99.
[10] L. Zeng;T.R. Bieler.Effects of working, heat treatment, and aging on microstructural evolution and crystallographic texture of alpha, alpha', alpha" and beta phases in Ti-6Al-4V wire[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,20051/2(1/2):403-414.
[11] 王悔改;冷文才;李双晓;陈明叶.热处理工艺对TC4钛合金组织和性能的影响[J].热加工工艺,2011(10):181-183.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%