欢迎登录材料期刊网

材料期刊网

高级检索

随着能源的短缺和环境污染的日益严重,汽车轻量化需求日益迫切,如何通过工艺及成分设计革新、获得兼具高强度和高塑性的钢板尤为重要。尝试将Cu作为合金元素加入TRIP钢中,采用淬火配分( Q&P )工艺对含Cu TRIP钢进行一步法和两步法热处理,通过拉伸试验、X射线衍射分析、扫描电镜、透射电镜等实验手段,对热处理后的组织及性能进行测试和观察,探究了不同热处理工艺对组织和性能的影响。研究结果表明:一步法处理后的显微组织为铁素体、马氏体和残余奥氏体,两步法处理后不仅包含上述3种组织,还含有贝氏体。一步法处理后,抗拉强度达2200 MPa,拉伸延展率为15%,强塑积为33 GPa ?%;两步法处理后综合力学性能优于一步法,在400℃等温5 min 后,抗拉强度为1300 MPa,拉伸延展率为43%,强塑积超过55 GPa?%。实验钢良好的综合力学性能得益于铁素体、马氏体/贝氏体和残余奥氏体的合理配比,变形过程中残余奥氏体的相变诱导塑性效应,以及马氏体位错与Cu粒子的交互作用。

A Cu-TRIP steel was heat-treated by quenching and partitioning ( Q&P ) processes including one-step (QT=PT, Quenching Temperature, Partitioning Temperature) and two-step(QT≠PT). Microstructures and properties differences were investigated by means of tensile tests, X-Ray diffraction ( XRD ) , scanning electron microscopy ( SEM ) , and transmission electron microscopy ( TEM ) . Results show that microstructure after one-step consists of martensite, ferrite, and retained austenite while that after two-step contains bainite except for the aforementioned three microstructures. Tensile strength and elongation are 2 200 MPa and 15%respectively after one-step, accompanied with a product of strength and elongation of 33 GPa?%. As far as two-step is concerned, a combination of tensile strength of 1 300 MPa and elongation of 43% is obtained at partitioning temperature of 400℃ with the highest product of strength and elongation of ~55 GPa?% which is prior to one-step. The eminent mechanical properties benefit from relative contents of phases, TRIP effect, and interaction between Cu precipitates and dislocation in martensite.

参考文献

[1] dos Santos, CN;Vieira, AG;Paula, AS;Viana, CSC.Influence of the austenitic rolling temperature on the microstructure of a TRIP steel before intercritical annealing[J].Journal of Materials Science,200912(12):3057-3060.
[2] 王长军;雍岐龙;孙新军;梁剑雄.强塑积大于30 GPa·%的热轧中碳TRIP钢组织及性能研究[J].材料科学与工艺,2014(2):61-67.
[3] 尹鸿祥;赵爱民;赵征志;宇文龙;李振;曹佳丽.Mn含量对低碳中锰TRIP钢组织性能的影响[J].材料科学与工艺,2014(3):11-15.
[4] J. Speer;D. K. Matlock;B. C. De Cooman;J. G. Schroth.Carbon partitioning into austenite after martensite transformation[J].Acta materialia,20039(9):2611-2622.
[5] 徐祖耀.钢热处理的新工艺[J].热处理,2007(01):1-11.
[6] 赵征志;梁驹华;汪烈承;唐荻;许汉风;覃强.Q&P工艺对冷轧高强钢中残留奥氏体的影响[J].材料热处理学报,2015(7):81-87.
[7] Shen, Y. F.;Qiu, L. N.;Sun, X.;Zuo, L.;Liaw, P. K.;Raabe, D..Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:551-564.
[8] Shen, Y. F.;Wang, P. J.;Liu, Y. D.;Misra, R. D. K.;Zuo, L..Activated dynamic strain aging of a TRIP590 Steel at 300 degrees C and low strain rate and relationship to structure[J].Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2015:333-338.
[9] 闫述;刘相华;刘伟杰;蓝慧芳;吴红艳.含Cu低碳钢Q&P工艺处理的组织性能与强化机理[J].金属学报,2013(8):917-924.
[10] SEMYON VAYNMAN;DIETER ISHEIM;R. PRAKASH KOLLI.High-Strength Low-Carbon Ferritic Steel Containing Cu-Fe-Ni-Al-Mn Precipitates[J].Metallurgical and materials transactions. A, physical metallurgy and materials science,20082(2):363-373.
[11] 周文浩;谢振家;郭晖;尚成嘉.700 MPa级高塑低碳低合金钢的多相组织调控及性能[J].金属学报,2015(4):407-416.
[12] 付高;邓运来;王亚风;戴青松;张新明.微量元素含量对Al-Zn-Mg合金组织与性能的影响[J].中国有色金属学报,2015(10):2632-2641.
[13] Zhuang Li;D. WU.Effects of hot deformation and subsequent austempering on the mechanical properties of Si-Mn TRIP steels[J].ISIJ International,20061(1):121-128.
[14] 景财年;王作成;金成俊;李昌吉;李泰皓.铜元素和退火温度对TRIP冷轧钢板组织和力学性能的影响[J].金属热处理,2004(9):19-22.
[15] 李路遥;齐艳萍;李维娟.贝氏体区热处理对马氏体基体冷轧TRIP钢组织与性能的影响[J].热加工工艺,2007(12):26-29,33.
[16] 张迎晖;赵鸿金;康永林.热轧C-Si-Mn系TRIP钢的组织与力学性能[J].材料科学与工艺,2008(3):319-321.
上一张 下一张
上一张 下一张
计量
  • 下载量()
  • 访问量()
文章评分
  • 您的评分:
  • 1
    0%
  • 2
    0%
  • 3
    0%
  • 4
    0%
  • 5
    0%